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Phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) is a key regulatory enzyme that link primary and 
secondary metabolism in plants by catalyzing the conversion of l-phenylalanine to cinnamic acid. In this 
study, the cDNA and genomic DNA of PAL (named EpPAL) in poinsettia (Euphorbia pulcherrima willd.) 
were isolated and submitted in GenBank with accession number FJ594466 and FJ943503, respectively. 
The full-length of cDNA was 2429 bp with a poly (A) tail and contains a 2166-bp open reading frame 
(ORF) encoding 721 amino acids. The sequence of genomic DNA was 3315 bp, and the transcript was 
divided into two exons by an 886-bp long intron which located at 416 bp downstream initiation codon. 
Expression analysis of EpPAL in poinsettia revealed that expression levels were higher in roots and 
bracts, but lower in stems and green leaves. Meanwhile, expression levels increased in the order: green 
leaves - turning color leaves - bracts, which were consistent with their anthocyanin content during 
growth and development of bracts. The curve of diurnal variation of EpPAL expression level in bracts 
exhibited two highest peaks at 9:00 and 18:00, respectively, and reached the lowest level at 12:00 in a 
clear day. With the maturation and senescence of bracts, expression levels reduced gradually in both 
green leaves and bracts, but decreased more rapidly in bracts than green leaves. 
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INTRODUCTION 
 
The color of plant organ, such as fruit, leaf and flower, 
originates from a blend of chlorophyll, carotenoids and 
flavonoids (Kim et al., 2003, 2006). Flavonoids can act as 
antioxidants and pathogen protectants, and have many 
bioactivities such as anti-cancer, anti-inflammation and 
anti-atherosclerosis (Harborne and Williams, 2000; Arai 
et al., 2000; Havsteen, 2002). Anthocyanins  belong  to  a 
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class of flavonoids which include about 4000 members, 
and contribute to the red, purple and blue color in flower, 
fruit and seed (Farzad et al., 2003; Tanaka et al., 2008). 
During ripening period of apple, strawberry, grape and 
litchi fruits, there is a rapid accumulation of anthocyanins 
(Woodward, 1972; Given et al., 1988; Reay et al., 1998; 
Wang et al., 1998). So far, the anthocyanin biosynthetic 
pathway and the enzymes included in it have been well 
studied (Holton and Cornish, 1995; Winkel-Shirley, 2001; 
Grotewold, 2006). Phenylalanine ammonia-lyase (PAL, 
EC 4.3.1.5) is a key enzyme catalyzing the first step of 
phenylpropanoid pathway among those enzymes (Kervinen 
et al., 1997; Wang et al., 2007) in plants (Janas, 1993; 
Kumar and Ellis, 2001; Ritter and Schulz, 2004; Francini 
et al., 2008), fungi (Kalghatgi et al., 1975; Mushi et al., 
1980; Sikora and Marzluff, 1982; Evans et al., 1987; 
Kupletskaya and  Dol’nikova, 1992)  and  bacteria  (Emes  
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and Vining, 1970; Piel et al., 2000; Xiang and Moore, 
2005). It was reported that a positive correlation relation-
ship was found between PAL activity and anthocyanin 
content in the fruits of apple (Steyn et al., 2004a, b), 
grape (Hrazdina et al., 1984) and strawberry (Given et 
al., 1988), while negative correlation relationship was 
observed in litchi fruit (Wang et al., 2004). Until now, PAL 
has been cloned from barley (Kervinen et al., 1997), 
banana (Wang et al., 2007), tobacco (Nagai et al., 1994), 
yam (Zhou et al., 2008), salvia (Hu et al., 2009), ginkgo 
(Chen et al., 2004) and so on. 

Poinsettia (Euphorbia pulcherrima willd.), which 
belongs to the family of Euphorbiaceae, is a major 
ornamental pot plant in many countries (Clarke et al., 
2004). Until 2008, the global production of poinsettia has 
exceeded hundreds of millions and is still expanding, 
indicating its economic and market potential for the floral 
industry (Clarke et al., 2008). Bracts are the prominent 
ornamental organ of poinsettia, which are born on the top 
of the plant, and they are a kind of red abnormal leaves 
rather than flowers. Therefore, the colour formation of 
bracts determines directly the appearance, quality and 
also the commodity value. 

In this research, to clarify the relationship between PAL 
and anthocyanin content in bracts, the cDNA and 
genomic DNA of PAL in poinsettia were cloned, and then 
its expression model in different organs, different leaves 
during development and bracts at different time in a clear 
day were studied by semi-quantitative reverse transcr-
iption polymerase chain reaction (RT-PCR) and real-time 
quantitative polymerase chain reaction (Q-PCR). 
 
 
MATERIALS AND METHODS 
 

Plant material 
 

Two poinsettia cultivars, ‘Prestige’ and ‘Early Velvet’, were grown in 
the greenhouse of the Horticultural Institute, Jiangsu Academy of 
Agricultural Sciences, China (32°02′N, 119°51′E). All the plants 
were treated in 5 weeks short-day in the normal cultivation 
conditions from August 5, 2008. Young bracts of ‘Prestige’ used as 
materials for gene cloning and roots, stems, green leaves, color-
turning leaves and bracts of ‘Early Velvet’ used as materials for 
expression analysis of different organs were sampled at about 
10:00 am. Red bracts of ‘Early Velvet’ used as materials for 
expression analysis of diurnal variation were taken every 3 h from 
6:00 to 21:00. To investigate the expression model of different 
developmental stages, bracts were sampled after short-day 
treatment of 5, 7 and 9 weeks, respectively. All the samples were 
immediately frozen in liquid nitrogen, and then stored at -80°C until 
use. 
 
 

RNA and DNA extraction 
 
Total RNA was extracted from all frozen samples using a modified 
cetyl trimethyl ammonium bromide (CTAB) extraction protocol (Xu 
et al., 2004). Prior to reverse-transcription, RNA samples were 
treated with DNase using DNase I kit (TaKaRa, Japan), according 
to the manufacturer’s guidelines. The RNA samples were quantified 
by spectrophotometer (Eppendorf, Germany) at 260 nm. 

Total DNA  extraction  from  the  young  bracts  of  ‘Prestige’  was  
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performed according to the method reported previously (Chen et 
al., 1997) with some modifications. 

 
 
Isolation of cDNA 
 
Reverse-transcription polymerase chain reaction was performed on 
1 µg total RNA using PrimeScriptTM 1st Strand cDNA Synthesis Kit 
(TaKaRa, Japan) with degenerate primers (Forward primer: 5'-
TTGCCTTCAAATCTTACCGC-3'; Reverse primer: 5'-GAGAAGAA 
TGCTAA-3'), and amplification was performed under the following 
condition: 94°C denaturation for 5 min, running 33 cycles of 94°C 
for 40 s; 50°C for 40 s; 72°C for 50 s and 72°C elongation for 10 
min. Based on the above sequence, amplification of the 3′ and 5′ 
regions were accomplished by applying 3′ and 5′ RACE strategies 
according to the manufacture’s guidelines of the 3′ and 5′ full RACE 
Core Set Ver.2.0 (TaKaRa, Japan) with specific primers. The outer 
and inner primers of 3′ RACE were 5'-GAAATGGATCCATTG 
CAGAA-3' and 5'-GATGTTTCGAGGAACAAGGC-3'. The outer and 
inner primers of 5′ RACE were 5'-GCTCCTCCCTCACAAACT-3' 
and 5'-CACGGGTCATCGGCATAG-3'. 

 
 
Isolation of genomic DNA 
 
Total DNA was used as template for polymerase chain reaction 
(PCR) to obtain genomic sequence of PAL. One pair of PCR 
primers (Forward primer: 5'-GGAAAATTACTTCTCAAG-3'; Reverse 
primer: 5'-TACATAGAAGGGATTACA-3') were designed based on the 
cloned PAL cDNA. Genomic sequence was amplified in a total volume of 
25 µl mixture containing total DNA 2 µl, 10 × PCR Buffer 2.5 µl, dNTP 
mixture (2.5 mM each) 0.5 µl, TaKaRa TaqTM (5 u / µl) 0.5 µl (TaKaRa, 
Japan), forward primer (10 μM) 1.5 µl, reverse primer (10 μM) 1.5 µl, ddH2O 
16.75 µl. The programs for PCR were as follows: denaturation at 94°C for 5 
min, 30 cycles of amplification (denaturation at 94°C for 40 s, annealing at 
50°C for 50 s, extension at 72°C for 2.5 min) and a final extension 
at 72°C for 10 min. 
 
 
Cloning and sequencing 
 
PCR products were separated by 1% agarose gel electrophoresis, 
and the incised gels were purified using TaKaRa Agarose Gel DNA 
Purification Kit Ver.2.0 (TaKaRa, Japan). The extracted products 
were cloned into PMD18-T vector (TaKaRa, Japan) and used to 
transform competent Escherichia coli DH5a cells (Trans, China). 
The recombinant plasmids were identified with the restriction 

enzymes BamHI and HindⅢ (TaKaRa, Japan) and sequenced by 

Shanghai Sangon Biological Engineering Technology & Services 
Co., Ltd. (Shanghai, China). 
 
 
Bioinformatics analysis 
 
The nucleotide sequence analysis, protein analysis and multiple 
sequence alignments were performed by DNAMAN 5.0. 
Transmembrane topology prediction was performed using TMHMM 
Server version 2.0 (http://www.cbs.dtu.dk/services/TMHMM/). Struc-
ture of genomic DNA organization was performed with Gene 
Structure Display Server (http://gsds.cbi.pku.edu.cn/). Additional 
homology analysis was conducted using BLAST of GenBank 
(http://www.ncbi.nlm.nih.gov/BLAST/). 

 
 
Gene expression analysis 

 
The gene OsActin (AB047313) was used as an internal control, and 

http://en.wikipedia.org/wiki/Reverse_transcription_polymerase_chain_reaction
http://nihserver.mbi.ucla.edu/Verify_3D/).Transmembrane
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designed primers were 5'-CTGGGTTCGCCGGAGATGAT-3' 
(forward primer) and 5'-TGAGATCACGCCCAGCAAGG-3' (reverse 
primer). The primers of gene-specific expression were designed 
according to the cloned PAL cDNA, with forward primer 5'-AACAC 
CAACATCACTCCCTG-3' and reverse primer 5'-GCTGAACCA 
GAACCGACA-3'. Semi-quantitative RT-PCR and Q-PCR were used 
to analyze expression model of PAL. We performed RT-PCR and Q-
PCR first to produce cDNA from total RNA. RT-PCR was performed 
according to the instruction under the following conditions: 3 min at 
94°C, 30 (28 for OsActin) cycles of 40 s at 94°C, 40 s at 50°C, 50 s 
at 72°C, and a final extension step for 10 min at 72°C. Q-PCR was 
performed using an ABI 7500 fluorescence quantitative PCR 
instrument (Applied Biosystems, USA) with the SYBR® Premix Ex 
TaqTM (Perfect Real Time) (TaKaRa, Japan). The amplification was 
carried out under the following conditions: 50°C for 2 min followed 
by an initial denaturation at 95°C for 10 min, 40 cycles at 95°C for 
15 s, 60°C for 1 min. The threshold cycle (Ct) values of the triplicate 
reactions were gathered using the 7500 system sequence detection 
software version 3.0. 
 
 
Determination of chlorophyll and anthocyanin content 
 
Chlorophyll content was determined by ethanol extraction method 
(Zou, 2000), and measurement of anthocyanin content was 
performed with the method reported by Zhang et al. (2006). 

 
 
RESULTS 
 

Isolation and sequence analysis of cDNA 
 

Reverse-transcription polymerase chain reaction, 3′ and 
5′ RACE strategies were used to clone the cDNA of PAL, 
and the amplifications obtained an approximate of 500, 
1000 and 2000 bp band, respectively. The splicing results 
showed that the size of cDNA was 2429 bp and contained 
an ATG start-point at position 133, an open reading frame 
(ORF) of 2166 bp, a TGA stop codon located at positions 
2296-2298, a 5′-untranslated region (5′-UTR) of 132 bp, a 
3′-UTR of 119 bp, a poly (A) tail and encoded 721 amino 
acids (Figure 1). Additionally, it had been submitted in 
GenBank with accession number FJ594466, which was 
designated as EpPAL. 

Protein analysis revealed that molecular mass of 
EpPAL was 78316.7 Da, theoretical isoelectric point (pI) 
was 6.52. Amino acids analysis of EpPAL showed that 
polar amino acids, hydrophobic amino acids, acidic 
amino acids and basic amino acids accounted for 49.97, 
27.77, 11.36 and 12.90%, respectively. The protein had 
two transmembrane topological structures each containing 
29 amino acids located at positions 267 - 295 and 503 - 
531. Alpha helix (52.98%) and random coil (34.12%) 
constituted interlaced domination of the main part in the 
secondary structure of protein, while extended strand 
(6.8%) and beta sheet (6.1%) was spreaded in the whole 
secondary structure. 

The homology analysis was carried out using the 
nucleotide sequence of PAL in poinsettia with that from 
other plants. The results demenstrated that EpPAL had 
an overall 78 - 87% identity with PAL isolated from 
Manihot    esculenta    (Genbank     accession     number: 

 
 
 
 
AY036011), Trifolium pratense (Genbank accession 
number: DQ073808), Medicago sativa (Genbank 
accession number: CAA41169), Prunus avium (Genbank 
accession number: AF036948), Camellia sinensis (Gen- 
bank accession number: D26596), Populus trichocarpa 
(Genbank accession number: EU603320), Glycine max 
(Genbank accession number: X52953) and Brassica 
napus (Genbank accession number: AY795078). Com-
parison of PAL amino acids sequence of poinsettia with 
other plants showed the identity of PAL in the same 
family was relatively high, for example, the identity of 
Euphorbia pulcherrima (Genbank accession number: 
ACM44926), Manihot esculenta (Genbank accession 
number: AAK60275) and Jatropha curcas (Genbank 
accession number: ABI33979) was between 87 and 92%, 
Pinus sylvestris (Genbank accession number: AAL74336) 
and Pinus taeda (Genbank accession number: T09777) 
was as high as 98.2%, while different families and 
classes were less than 80 and 70%. These results were 
in agreement with the evolutionary laws of plants (Table 
1). Therefore, it could be speculated that such cDNA was 
phenylalanine ammonia-lyase of poinsettia. 
 
 
Isolation of genomic DNA 
 
Genomic DNA of EpPAL was cloned by PCR method 
based on the obtained cDNA and extracted DNA, and 
sequence analysis indicated that its length was 3315 bp. 
To elucidate the genomic organization, the sequence of 
genomic DNA and cDNA were aligned by software 
DNAMAN 5.0. Results indicated that transcript was 
divided into two exons by one intron, and the exons 
sequence was consistent with the cDNA which encoded 
137 and 584 amino acids, respectively. The intron was 
886 bp long, located at 416 bp downstream initiation 
codon and began with the sequence GT and ended with 
AG which confirmed the consensus 5′ and 3′ intron splice 
sites for mRNA. It was deposited in GenBank with 
accession number FJ943503. 
 
 

Expression of EpPAL in different organs 
 
We determined anthocyanin and chlorophyll content in 
different types of leaves at first (Figure 2). The antho-
cyanin content of bracts was highest among all the leaves 
which was about 2 and 3 times of turning colour leaves 
and green leaves, respectively. On the contrary, the 
chlorophyll content of green leaves was most abundant 
while that of bracts was the lowest. It revealed that red 
coloration in poinsettia bracts was caused by anthocyanin 
accumulation, and green leaves displayed green color 
because of large amount of chlorophyll existence. 

Semi-quantitative RT-PCR and Q-PCR were used to 
investigate the expression pattern of EpPAL. It was found 
that the expression of PAL could be detected in different 
organs  tested  at  different  levels   (Figure 3).  The   higher   
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Figure 1. Nucleotide sequence of full-length cDNA and the deduced amino acid sequence of EpPAL. The deduced 
amino acids sequence was shown underneath the corresponding nucleotides sequence, others were un-coding 
region; stop code was indicated with*. 
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Table 1. Homology analysis and distance matrix of PAL amino acids sequence between poinsettia and other plants. 
 

Plant 
Euphorbia 
pulcherrim

a 

Jatropha 
curcas 

Manihot 
esculenta 

Pinus 
sylvestris 

Pinus 

taeda 

Camellia 
sinensis 

Cicer 
arietinum 

Vigna 
unguiculata 

Oryza 
sativa 

Triticum 
aestivum 

Euphorbia 
pulcherrima 

* 0.122 0.110 0.347 0.373 0.178 0.196 0.176 0.282 0.274 

Jatropha curcas 87.8 * 0.083 0.326 0.351 0.164 0.176 0.153 0.257 0.220 

Manihot esculenta 89.0 91.7 * 0.327 0.354 0.169 0.172 0.152 0.266 0.227 

Pinus sylvestris 65.3 67.4 67.3 * 0.018 0.329 0.348 0.308 0.357 0.323 

Pinus taeda 62.7 64.9 64.6 98.2 * 0.357 0.374 0.330 0.370 0.348 

Camellia sinensis 82.2 83.6 83.1 67.1 64.3 * 0.184 0.173 0.277 0.245 

Cicer arietinum 80.4 82.4 82.8 65.2 62.6 82.6 * 0.128 0.288 0.258 

Vigna unguiculata 82.4 84.7 84.8 69.2 67.0 82.7 87.2 * 0.263 0.240 

Oryza sativa 71.8 74.3 73.4 64.3 63.0 72.3 71.2 73.7 * 0.160 

Triticum aestivum 75.3 78.0 77.3 67.7 65.2 75.5 74.2 76.0 84.0 * 
 

Upper right triangle was phylip distance; Lower left triangle was percent identity. The plants GenBank accession numbers were listed as follows: Euphorbia pulcherrima (ACM44926), 
Jatropha curcas (ABI33979), Manihot esculenta (AAK60275), Pinus sylvestris (AAL74336), Pinus taeda (T09777), Camellia sinensis (BAA05643), Cicer arietinum (CAB60719), Vigna 
unguiculata (AAD45384), Oryza sativa (S66313) and Triticum aestivum (T06545). 

 
 
 

expression levels were found in roots and bracts, 
lowest in stems, while expression levels increased 
gradually in green leaves, turning color leaves and 
bracts. 
 
 
Expression of EpPAL in diurnal variation of 
bracts 
 
The curve of diurnal variation of EpPAL expres-
sion level in bracts was bimodal model (Figure 4). 
It demonstrated two highest peaks at 9:00 and 
18:00, respectively, and reached the lowest peak 
at 12:00 in a clear day. The expression level of 
two highest peaks was more than 3 times of the 

lowest peak at 12:00. 
 
 
Expression of EpPAL in the leaves at different 
developmental stages 
 
With the extension of short-day treatment, bracts 
and green leaves continued to mature and sene-
scence. In this process, the anthocyanin content 
in bracts and green leaves had little change but 
showed a downward trend, while chlorophyll 
content reduced significantly both in bracts and 
green leaves (Figure 5). 

Expression levels of EpPAL in the leaves at 
different developmental stages were different. 

With the maturation and senescence of bracts, the 
expression levels of EpPAL were gradually 
reduced in both green leaves and bracts, but 
decreased rapidly in bracts than green leaves. 
The expression level in 5 weeks short-day 
treatment bracts was about 5 and 72 times of 
those in 7 and 9 weeks short-day treatment ones, 
respectively, but there was no significant diffe-
rence in the expression levels of green leaves 
(Figure 6). 
 
 
DISCUSSION 
 
Phenylalanine ammonia-lyase was a key regulatory 
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Figure 2. Anthocyanin and chlorophyll content in different types of leaves. 
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Figure 3. Expression of EpPAL in different organs. It was assessed by Semi-quantitative RT-PCR and Q-
PCR. M, DL2000; 1, root; 2, stem; 3, green leaf; 4, turning color leaf; 5, bract. 

 
 
 

enzyme linking primary and secondary meta-bolism in 
plant by catalyzing  the  conversion  of  l-phenylalanine to 
cinnamic acid (Hu et al., 2009). It was usually encoded by 
a multi-gene family (Cramer et al., 1989; Wanner et al., 
1995; Francini et al., 2008), and very conservative in the 

structure which generally contained only one intron and 
two exons, such as PsPAL1 and PsPAL2 in pea (Yamada 
et al., 1992), PAL5 in tomato (Lee et al., 1992), together 
with PAL1 and PAL2 in Arabidopsis (Wanner et al., 1995). 
In  this  research,  only one PAL in poinsettia
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Figure 4. Expression of EpPAL in bracts on a clear day. It was assessed by Semi-quantitative RT-PCR 
and Q-PCR. M, DL2000. 
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Figure 5. Aanthocyanin and chlorophyll content in leaves at different developmental stages. 
 
 
 

was isolated,  which  might  be related to the species or 
the amplification depended on specific primers designed. 
Meanwhile, the genomic DNA of EpPAL had one intron, 
whose number was basically consistent with M. esculenta 

(Genbank accession number: AF383152), Nicotiana 
tabacum (Genbank accession number: AB008200), J. 
curcas (Genbank accession number: DQ883805) and so 
on, but the length of intron varied in different plants, 
which might be the results of long-term evolution of 

species. Tissue-specific expression of PAL existed in 
plants (Cramer et al., 1989). In this study, the expression 
levels of EpPAL were higher in roots and bracts, but 
lower in stems and green leaves. Meanwhile, the 
expression level of EpPAL increased in the order: green 
leaves-turning color leaves-bracts, which was consistent 
with their anthocyanin content. The above result 
suggested that EpPAL might play an important role in the 
anthocyanin biosynthetic pathway of poinsettia bracts. 

However, there was no anthocyanin accumulation in 
white roots, but the relative expression level of EpPAL 
was similar to that of red bracts, which apparently showed 
that EpPAL did not play a role for the biosynthesis of 
anthocyanin in roots, and might synthesize some meta-
bolites in the anthocyanin biosynthesis pathway, such as 
phenolics and flavonoids. 

PAL was an inducible enzyme which could be 
stimulated by many external factors, light was one of 
them (MacLean et al., 2007). The activity of PAL changed 
periodically under natural sunlight and continuous 
illumination of the light. But in the continuous darkness, 
the PAL activity was maintained at a steady level with a 
low value. Yang and Hou, (1997) and Liu and Cheng, 
(2003) speculated that light could induce the activity of 
PAL or synthesize PAL-I. In this study, the curve of 
diurnal variation of EpPAL expression level in bracts  
demonstrated  two  highest  peaks  at   9:00   and   18:00,  
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Figure 6. Expression of EpPAL in leaves at different developmental stages. It was 
assessed by Semi-quantitative RT-PCR and Q-PCR. In Semi-quantitative RT-PCR, 
M: DL2000; 1, green leaf of 5 weeks short-day treatment; 2, bract of 5 weeks short-
day treatment; 3, green leaf of 7 weeks short-day treatment; 4, bract of 7 weeks 
short-day treatment; 5, green leaf of 9 weeks short-day treatment; 6, bract of 5 
weeks short-day treatment. In Q-PCR: 1, 5 weeks short-day treatment; 2: 7 weeks 
short-day treatment; 3: 9 weeks short-day treatment. 

 
 
 

respectively, and reached the lowest peak  at  12:00  in  a 
clear day. This was in accordance with that above-
mentioned, so we deduced that EpPAL expression might 
also be induced by light. 

Previous studies revealed that there was a positive or 
negative correlation relationship between PAL activity and 
anthocyanin content during the development of matu-
ration in peel of apple fruit (Dong et al., 1995; Ju et al., 
1995). In this research, with the maturation and sense-
cence of bracts, the expression levels of PAL were 
gradually reduced in both green leaves and bracts, but 
decreased rapidly in bracts than green leaves. But 
anthocyanin content in bracts and green leaves had little 
change but showed a downward trend, while chlorophyll 
content was significantly reduced. Therefore, we deduced 
that EpPAL activity was relevant to anthocyanin bio-
synthesis in the stage of turning color poinsettia bracts, in 

which precursor substances synthesized and accu-
mulated quickly. With the maturation and senescence of 
bracts, although the expression of EpPAL had decreased 
gradually together with its small changed activity, 
anthocyanin continued to synthesize with the previous 
accumulated precursors, so the downstream enzyme in 
the phenylpropanoid pathway might be more important 
than PAL. 
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