Main Article Content
Silicon improves growth and antioxidative defense system in salt-stressed Kentucky bluegrass (Poa pratensis L.), ‘Perfection’ and ‘Midnight’
Abstract
After 400 mM of NaCl treatment, 0.1 and 1.0 mM of silicon (Si) were added to Kentucky bluegrass, ‘Perfection’ and ‘Midnight,’ to identify the effect of Si on the antioxidant defense mechanisms and inorganic ions as a parameter in the salt stress on grass. Compared to the control, the NaCl treatment caused a significant decrease in the shoot length and the fresh and dry weight of shoot and root of the both types of Kentucky bluegrass. Adding Si after the NaCl treatment increased the growth and dry and fresh weight of shoot and root in the grass. In both types, the Na+ concentration significantly increased after the NaCl-only treatment compared to control and decreased dramatically after 0.1 and 1.0 mM Si were added following the NaCl treatment compared to the NaCl-only treatment. K+ and Si concentrations remarkably increased in the shoot and root when Si was added after NaCl treatment. There was a significant reduction in the oxygen radical absorption capacity and the total phenolic compounds in the both types. Compared to the NaCl-only treatment, higher glutathione and lower proline concentrations were observed in the plant treated with Si after NaCl treatment. These results suggest that, even though Si is not generally classified as ‘essential element’, Si may have a significant involvement in the antioxidant defense mechanisms and inorganic ions in the salt stress on grass.
Key words: diphenyl-1-picrylhydrazyl (DPPH), total phenolic concentration, proline, salt stress.