Abstract
This work shows the application of machine learning to predict current CD4 cell count of an HIV-positive patient using genome sequences, viral load and time. A regression model predicting actual CD4 cell counts and a classification model predicting if a patient’s CD4 cell count is less than 200 was built using a support vector machine and neural network. The most accurate regression and classification model took as input the viral load, time, and genome and produced a correlation of co-efficient of 0.9 and an accuracy of 95%, respectively, proving that a CD4 cell count measure may be accurately predicted using machine learning on genotype, viral load and time.
Keywords: Human immunodeficiency virus (HIV), antigens, CD4, computational biology, artificial intelligence, data mining, pattern recognition.
African Journal of Biotechnology Vol. 12(23), pp. 3724-3730