Main Article Content

Characterization of the Antheraea pernyi abnormal wing disc gene that may contribute to its temperature tolerance


De-Fu Jiang
Yan-Qun Liu
Xi-Sheng Li
Sheng-Lin Shi

Abstract

It has been known that the abnormal wing disc (awd) gene encodes a nucleoside diphosphate kinase and is closely related to wing development in Drosophila melanogaster and Bombyx mori. In the present study, the awd gene was isolated and characterized from Antheraea pernyi, a well-known wild silkmoth. The isolated cDNA sequence is 666 bp in length with an open reading frame of 462 bp encoding a polypeptide of 153 amino acids, which contains a putative nucleoside diphosphate kinases active site motif and conserved multimer interface. The deduced A. pernyi awd protein sequence reveals 75, 82 and 96% identity with its homologue of Homo sapiens, D. melanogaster, and B. mori, respectively. Semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis showed that the awd gene was transcribed during all four developmental stages (egg, larva, pupa, and moth), and present in all tissues tested (blood, midgut, silk glands, Malpighian tublues, spermaries, ovaries, brain, muscle, fat body and body wall), with the highest abundance in Malpighian tubules. Interestingly, mRNA expression level in pupal fat body was significantly down-regulated after cold shock (4°C) compared with the control (26°C) and significantly up-regulated after heat shock (46°C). The results indicated that the A. pernyi awd gene is inducible, and that its expression effect is different after cold stress and heat stress. Consequently, we refer that the product of the awd gene may contribute to its temperature tolerance.

Key words: Antheraea pernyi, abnormal wing disc gene, cloning, expression pattern, temperature stress.


Journal Identifiers


eISSN: 1684-5315
 
empty cookie