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Two strains of Thiobacillus isolated from native excess activated sludge were identified as 
Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans by 16S rRNA gene sequencing and 
physiological-biochemical characteristics. Single and mixed cultures of the strains were used to carry 
out bioleaching for 9 days in order to remove heavy metals from activated sludge. The changes in pH, 
oxidation-reduction potential, and contents of heavy metals were measured. The results show that the 
bioleaching effect of the mixed culture was best in all runs, and that the final removals of As, Cr, Cu, Ni, 
and Zn were 96.09, 93.47, 98.32, 97.88, and 98.60%, respectively, whereas the removals of Cd and Pb 
decreased rapidly after six days. In addition, we demonstrate for the first time that bioleaching can 
reduce the pathogenicity of sludge by detecting fecal coliforms before and after bioleaching in order to 
ensure that the sludge was suitable for agricultural land application. 
 
Key words: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, excess activated sludge, removing 
heavy metals, sludge pathogenicity. 

 
 
INTRODUCTION 
 
Sewage sludge, which is produced during sewage dispo-
sal, must be disposed in order to maintain a sufficient 
oxygen supply and a fixed concentration of sludge (Koso-
bucki et al., 2008). Currently, landfill, incineration, sea 
disposal, and agricultural land application are used to dis-
pose off sewage sludge (Kim et al., 2005). Among these 
techniques, land application is considered to be the most 
attractive because the high content of organic matter in 
sewage sludge can provide nutrients to crops (Tyagi and 
Couillard, 1987). However, the high content of toxic 
heavy metals in the sludge often causes severe environ-
mental problems, and this significantly restricts the land 
application of sludge (Bruce and Davis, 1989; Burton, 
1991; McGhee, 1991). Therefore, pretreatment of se-
wage sludge to remove heavy metals before land appli-
cation becomes an indispensable part of adequate sludge 
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sludge management (McGhee, 1991). 
Chemical methods, including chlorination, ion ex-

change, complexation, and acidification, have generally 
been used to remove heavy metals from dewatered slu-
dge. However, these techniques have many disadvan-
tages, such as high cost, operational difficulty, high ener-
gy requirements, and sometimes unsatisfactory metal 
solubilization (Xin et al., 2009). As an alternative means 
of removing heavy metals, bioleaching has several ad-
vantages, including low cost, easy operation, low energy 
requirement, a high degree of metal solubilization, and 
non-hazardous byproducts (Mercier et al., 1996). 

Bioleaching refers to the direct and indirect reactions of 
certain microorganisms in the natural environment, inclu-
ding oxidation, reduction, chelation, adsorption, and dis-
solution, which can dissolve some of the insoluble sub-
stances (heavy metals, sulfur, and other metals) from 
solid substances (Bosecker, 1997). 

Acidithiobacillus ferrooxidans and Acidithiobacillus thio-
oxidans are considered to be the most effective bacteria
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Table 1. The characteristics of the sludge sample. 
 

Characteristic Te content Method 

Solid content (%) 5 Drying in 105°C 

pH (H2O) 6.87 Potentiometric 

ORP (mV) -38 Potentiometric 

TN (mg/kg DS) 4950 UV–vis 

TP (mg/kg DS) 3259 UV–vis 

SO4
2-

 (mg/kg DS) 3592 UV–vis 

Cu (mg/kg DS) 2740 ICP 

Zn (mg/kg DS) 1765 ICP 

Cd (mg/kg DS) 5.213 ICP 

Cr (mg/kg DS) 181.9 ICP 

Pb (mg/kg DS) 101.2 ICP 

Ni (mg/kg DS) 117.0 ICP 

As (mg/kg DS) 21.47 ICP 

Fecal coliforms (mpn/g) 14600 the National Standard (GB/T 19524.1-2004) 
 

TN, Total nitrogen; TP, total phosphorus; DS, dry sludge; ORP, oxidation-reduction potential. 
 
 
 

for bioleaching (Solisio et al., 2002). They are both che-
moautotrophic bacteria, using CO2 as a carbon source 
and iron or sulfur as an energy source, without a require-
ment for organic nutrients. In addition, strict aseptic 
conditions are not necessary when these bacteria are 
employed for bioleaching because the growth of most 
other bacteria is markedly inhibited by the low pH (Rousk, 
2009). Thus, there are prospective applications of these 
two bacteria in the removal of heavy metals and com-
prehensive utilization of excess activated sludge. The 
reactions of bioleaching by Acidithiobacillus ferrooxidans 
and Acidithiobacillus thiooxidans also include the direct 
and indirect reactions (Babel and del Mundo, 2006): The 
elemental sulfur can be oxidized into sulfate through the 
direct reaction by Acidithiobacillus thiooxidans and the 
dissolution of heavy metals takes place concomitantly. In 
indirect way, Fe (III) oxidized by Acidithiobacillus ferrooxi-
dans take part in the dissolution of heavy metals and the 
formation of H2SO4 during the process further enhances 
the overall efficiency. 

In this study, two native bacteria, identified as Acidithio-
bacillus ferrooxidans and Acidithiobacillus thiooxidans, 
were isolated from excess activated sludge. Single and 
mixed cultures of these bacteria were used to carry out 
bioleaching for 9 days to remove heavy metals from acti-
vated sludge. The changes in pH, oxidation-reduction 
potential (ORP), and the contents of heavy metals were 
measured and analyzed to compare the efficiency of the 
two bacteria and to investigate suitable conditions for 
bioleaching. Furthermore, fecal coliforms in the sludge 
before and after bioleaching were determined in order to 
ensure that the sludge was suitable for land application. 
 
 

MATERIALS AND METHODS 
 

Excess activated sludge was obtained from Dongli Sewage Treat-
ment Works, Tianjin, China. It was stored at 4°C before use. The 

characteristics of the sludge sample are shown in Table 1. The 
content of heavy metals in the sludge generally exceeded the 
National Standard (GB18918-2002). 

A. ferrooxidans was isolated from the activated sludge using 9K 
selective culture medium. The composition of 9K medium was as 
follows: (NH4)2SO4, 3.0 g; K2HPO4, 0.5 g; MgSO4·7H2O, 0.5 g; KCl, 

0.1 g; Ca (NO3)2·4H2O, 0.01 g; FeSO4·7H2O, 44 g; distilled water, 
1000 mL; pH 2.0. 

1 to 2 g of sludge was added to 100 mL culture medium, and the 
culture was incubated in a shaker at 150 rpm and 30°C for 7 to 10 
days. The A. ferrooxidans obtained by this method was transferred 
to fresh medium and cultured under the same conditions for 
enrichment. 

A. thiooxidans was also isolated from the activated sludge by 
using 9K selective culture medium. 44 g FeSO4·7H2O was changed 
to 10 g sulfur. The process and conditions are the same as those 
described above. 

Total DNAs of the two strains were extracted. Freeze-thawing 
was used to break the cell walls. The cells were frozen at –20°C for 
10 min and then thawed at 70°C for 10 min. This procedure was 
repeated three times. Total DNA was then extracted using bacterial 
genome kits (TIANGEN DP302-02). The 16S rRNA gene was ex-
tended by PCR using special extending primers 27F/1492R and 

PCR program was carried out as Yang (2011), and subsequently 
sequenced by a commercial company. The sequences were blasted 
on NCBI (National Center for Biotechnology Information) and sub-
mitted to GenBank. Phylogenetic tree for two bacteria was con-
ducted by ClustalX version 1.83 and MEGA version 3.0, using 
neighbour-joining method and Kimura 2 parameter distance with 
1000 replicates to produce Boot-strap values (Kumar et al., 2004). 

Bioleaching experiments were conducted in 500 mL Erlenmeyer 

flasks. The bioleaching systems, made to a volume of 200 mL with 
distilled water, comprised the following: 5% (w/v) sludge; 
(NH4)2SO4, 0.6 g; K2HPO4, 0.1 g; MgSO4·7H2O, 0.1 g; KCl, 0.02 g; 
and Ca(NO3)2·4H2O, 0.002 g. To the A. ferrooxidans bioleaching 
system, 8.8 g FeSO4·7H2O and 10% (v/v) A. ferrooxidans were 
added, whereas to the A. thiooxidans bioleaching system, 2.0 g 
sulfur and 10% (v/v) A. thiooxidans were added. To the system bio-
leached by a mixed culture of A. ferrooxidans and A. thiooxidans, 
8.8 g FeSO4.7H2O and 2.0 g S, together with 5% (v/v) A. 
ferrooxidans and 5% (v/v) A. thiooxidans were added. The control 
included 5% (w/v) sludge and 200 mL water without bacteria. The 
initial pH for bioleaching was adjusted to 4.0 by adding H2SO4. 
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Figure 1. TEM images (×18000) and Phylogenetic tree of A. 

ferrooxidans and A. thiooxidans. (a): A. ferrooxidans NK-16; (b): 
A. thiooxidans NK-06. Bacterial suspension dyed by phosphor-
tungstic acid was observed by transmission electron microscope 
(Philips EM400ST). 

 
 
 
Each of the systems had three replicates. The flasks were incu-

bated in a shaker at 150 rpm and 30°C for 9 days.  
The pH of the bioleaching systems was measured every 48 h 

using a pH meter. The ORP of the bioleaching systems was measu-
red every 48 h using an ORP meter (Mettler SG2-T). The content of 
heavy metals in the bioleaching systems was determined every 72 
h by inductively coupled plasma (ICP) analysis (Thermo IRIS 
Intrepid II XSP). The resolution rate of heavy metals = (A–B)/A × 
100% (A is the content of heavy metals in sludge before biolea-

ching; B is the content of heavy metals in sludge after bioleaching). 
Fecal coliforms in the sludge were determined according to the 
National Standard (GB/T 19524.1-2004). 
 
 
RESULTS AND DISCUSSION 
 

FeSO4·7H2O was the only energy source in the culture, 
without an organic carbon source, and the pH of the 
culture was 2. Only A. ferrooxidans could survive in these 
conditions. FeSO4·7H2O was transformed to a jarosite 
precipitation by the bacteria, which indicated the meta-
bolic process of A. ferrooxidans. Furthermore, sequence 
analysis of the 16S rRNA gene revealed that it had 99% 
similarity with the corresponding sequences of A. ferro-
oxidans in GenBank. Therefore, the strain isolated was 
identified as A. ferrooxidans, and was named Acidi-thio-
bacillus ferrooxidans NK-16.  

 
 
 
 

Identification of NK-16 was difficult because jarosite 
attached to the cell walls made it difficult to break the cell 
walls using traditional methods. Alkaline lysis, enzyme 
digestion, and boiling methods all proved ineffective 
because of the stability of jarosite. In contrast, freeze-
thawing efficiently destroyed the jarosite and broke the 
cell walls. 

Sulfur was the only energy source in the culture and 
the initial pH of the culture was 3.5 to 4. Only A. thiooxi-
dans could survive in these conditions. The bacteria used 
sulfur to yield H2SO4, indicating the biochemical charac-
teristics of A. thiooxidans. In addition, the 16S rRNA gene 
of the strain and the corresponding GenBank sequences 
of A. thiooxidans had similarities of 99%. Therefore, the 
strain isolated was identified as A. thiooxidans, and was 
named Acidithiobacillus thiooxidans NK-06. 

Sulfur attached to the cell walls also made it difficult to 
break the cell walls. Therefore, freeze-thawing was also 
used for A. thiooxidans.  

The 16S rRNA gene sequences of the two bacteria 
were submitted to GenBank (the serial numbers are 
FJ598321 and FJ946877). 

The phylogenetic tree of the two bacteria is shown in 
Figure 1, which also indicates that NK-16 and NK-06 are 
strains of Acidithiobacillus ferrooxidans and Acidithio-
bacillus thiooxidans, respectively. 
 

 
 

 
 

Figure 2. Changes of pH during the bioleaching. A.t, 

Acidithiobacillus ferrooxidans; A.f, Acidithiobacillus thiooxidans. 
 
 
 

The pH of the bioleaching systems dropped during the 
bioleaching process, whereas that of the control gradually 
increased (Figure 2). Such variation in pH can indicate 
the activity of Thiobacillus (Zhang et al., 2009). 

After bioleaching, the pH of the solutions that were 
bioleached by A. ferrooxidans, A. thiooxidans, and the 
mixed   culture   of   A.  ferrooxidans  and  A.  thiooxidans 
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Figure 3. Changes of oxidation-reduction potential (ORP) during the bioleaching. A.t, Acidithiobacillus 

ferrooxidans; A.f, Acidithiobacillus thiooxidans. 
 
 
 

decreased from the initial value of 4.0 to 1.9, 1.64, and 
1.75, respectively. However, the pH of the control 
increased to 7.15 from 4.0. The pH between mixed cul-
ture system and single culture system was not significant. 

A. ferrooxidans caused a decrease in pH because the 
Fe

3+
 produced from Fe

2+
 by A. ferrooxidans could 

hydrolyze and yield jarosite precipitation, during which H
+ 

was produced. A. thiooxidans caused a decrease in pH 
because it used sulfur to produce H2SO4. Variation in 
ORP can also indicate the activity of Thiobacillus (Zhang 
et al., 2009). 

On the 1
st
 day of bioleaching, the ORP of all the solu-

tions increased. From the 2
nd

 to the 9
th
 day, the ORP of 

the control decreased after a slight increase, whereas 
that of the others continued to increase (Figure 3). At the 
end of bioleaching, the ORP of the solutions bioleached 
by A. ferrooxidans, A. thiooxidans, and the mixed culture 
increased to 612, 605, and 611 mV from the initial values 
of 228, 191, and 212 mV, respectively. In contrast, the 
ORP of the control increased from 173 mV to just 288 
mV. During bioleaching, the ORP between mixed culture 
system and single culture system was also not signi-
ficant. The increase in ORP was attributable to the oxide-
tion of Fe

2+ 
and S. 

As shown in Table 2, the removal of As, Cr, and Ni 
increased with time. The effect of bioleaching by the 
mixed culture was better than that by either single culture 
in most case. Dissolution increased concomitant with a 

decrease in pH and increase in ORP, because the high 
acidity can help the dissolution of heavy metals and high 
ORP can dissociate the complicated sludge solid to set 
the heavy metals free (Bosecker, 1997). After 9 days of 
bioleaching, the removal of As, Cr, and Ni in the system 
of the mixed culture was 96.09, 93.47, and 97.88%, 
respectively. 

The results show that bioleaching by A. ferrooxidans 
and the mixed culture dissolved over 90% of Cu and Zn 
until the 3

rd
 day, whereas bioleaching by A. thiooxidans 

needed 6 days to have a similar effect (Table 2). The pH 
of the solution bioleached by A. ferrooxidans and the 
mixed culture was 2.33 and 2.4, respectively, whereas 
that of the solution bioleached by A. thiooxidans was 
2.66. Thus, the dissolution of Cu and Zn was sensitive to 
a pH value of approximately 2.5, and most of the Cu and 
Zn were dissolved below pH 2.4. The dissolution rates of 
Cu and Zn remained relatively constant or increased 
slightly. After bioleaching for 9 days, the mixed culture 
had the highest removal of Cu (98.32%) and Zn 
(98.60%), whereas A. ferrooxidans dissolved 95.98% of 
Cu and 96.49% of Zn, and A. thiooxidans dissolved 
95.87% of Cu and 96.83% of Zn. 

As indicated in Table 2, the removal of Cd and Pb in-
creased sharply during the first 3 days, remained ess-
entially unchanged or increased slightly from the 3

rd
 day 

to the 6
th
 day, but then decreased. This may be due to the 

fact that the dissolved heavy metals combined with the
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Table 2. The removal of heavy metals during the bioleaching by single and mix bacteria. 
 

Removal (%) Time (day) A.t A.f A.f+A.t 

Cu 

3 62.86±2.51 89.71±6.55 94.28±1.99 

6 92.01±2.08 93.95±1.09 97.71±1.21 

9 95.87±1.23 95.98±0.22 98.32±0.05 

     

Zn 

3 85.10±0.83 94.26±1.16 97.72±0.75 

6 95.46±1.67 96.54±2.03 97.58±1.85 

9 96.83±0.24 96.49±1.28 98.60±0.43 

     

Cr 

3 1.38±0.65 53.49±3.29 75.77±6.08 

6 61.64±5.44 80.90±3.36 85.29±3.89 

9 80.36±3.66 92.09±0.25 93.47±1.14 

     

Ni 

3 63.54±4.05 75.21±2.37 91.59±2.27 

6 82.46±3.54 85.55±1.72 95.26±1.35 

9 93.51±0.55 92.83±0.88 97.88±0.27 

     

As 

3 53.81±1.36 75.05±4.43 65.00±5.69 

6 64.47±2.98 86.76±2.16 86.72±0.88 

9 68.29±3.73 94.51±0.48 96.09±1.04 

     

Pb 

3 97.56±2.05 75.55±4.22 96.95±1.33 

6 98.70±0.78 84.96±3.78 94.71±2.81 

9 91.37±3.55 0±0 28.62±4.48 

     

Cd 

3 97.27±0.42 85.08±0.13 99.90±0.02 

6 98.75±0.12 100±0 100±0 

9 86.62±0.05 0±0 0±0 
 

Value ± SD, n=3. A.t, Acidithiobacillus ferrooxidans; A.f, Acidithiobacillus thiooxidans. 

 
 
 

sludge again. The highest removal of Cd and Pb in the 
solution bioleached by the mixed culture was 100 and 
94.71% on the 6

th
 day. However, on the 9

th
 day, these 

rates decreased to 0 and 28.62%, respectively. The high-
est removals of Cd and Pb by A. ferrooxidans also 
occurred on the 6

th
 day (100 and 84.96%, respectively) 

but both decreased to 0% on the 9
th
 day. A. thiooxidans, 

however, played an important role in bioleaching Cd and 
Pb, removing 97.56, 98.70, and 91.37 on the 3

rd
, 6

th
, and 

9
th
 days, respectively. 
The removal of bioleaching appears different between 

several heavy metals. Nareshkumar (2008) found that 
solubilization of Cr, Zn, Cu, Pb and Cd from the conta-
minated soil was in the range of 11 to 99% using A. 
thiooxidans. Xiang (2000) used A. ferrooxidans to deal 
with anaerobically digested sludge and obtained the 
removal of Cr, Cu, Zn, Ni and Pb which were between 
16.2 and 91.5%. Moreover, Qiu (2006) found similar 
results with A. thiooxidans and Acidithiobacillus ferrooxi-
dans. However, in this study, the removal of As, Cr, Cu, 
Ni, and Zn bioleaching by the mixed culture were all 
above 90%. The high removal may be due to the effect of 

indigenous bacteria. The activated sludge which the 
strains were isolated from and the bioleaching carried out 
with came from the same bioreactor. So NK-06 and NK-
16 should be indigenous bacteria to the sludge sample. 
Exogenous species often fail to compete with the indi-
genous population due to a lack of suitability and may 
also cause process inhibition. In addition to the potential 
for lower cost, indigenous bacteria also have a better 
environmental friendliness, which show a bright prospect 
for environmental improvement. Such in-situ action could 
promote bacterial metabolism and strengthen bioleaching 
effectiveness (Mikkelsen et al., 2009). 

In addition, few studies have paid attention to the effect 
of bioleaching time. However, in this study, we found that 
several kinds of metals could be absorbed by sludge as 
the reaction time increased, which could cause the remo-
val to decreased. Therefore, reaction time is an important 
factor of bioleaching. 

The number of fecal coliforms in the sludge before bio-
leaching was 14600 mpn/g, as determined by the most 
probable number technique. In contrast, the number after 
bioleaching was 0. This showed that pathogenicity of the  



 
 
 
 
sludge was markedly reduced after bioleaching, and that 
the sludge was suitable for land application. 
 
 
Conclusions 
 
The pH of sludge decreased to below 2 after bioleaching 
for 9 days. After the same period, the ORP of the sludge 
increased to over 600 mV. In terms of As, Cr, Cu, Ni, and 
Zn removal, the mixed culture of A. ferrooxidans and A. 
thiooxidans was more effective in bioleaching than the 
single cultures of A. ferrooxidans or A. thiooxidans, and 
the effect improved with time. While, for Cd and Pb, the 
removal by the mixed culture or A. ferrooxidans single 
culture decreased after 6 days, whereas with A. thiooxi-
dans single culture the removal rate remained high. 
Therefore, an appropriate bioleaching time and propor-
tion of the two bacteria should be employed to achieve an 
optimal removal of heavy metals.  
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