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Artifical neural networks practices were used to predict the recovery of heavy metals (Zn, Cu, Ni, Pb, Cd 
and Cr) from dewatered metal plating sludge (with no sulfide or sulfate compounds) using bioleaching 
process involving Acidithiobacillus ferrooxidans. The bioleaching process was operated as a 
completely mixed batch (CMB) reactor. The leaching performance data of the CMB reactor in terms of 
heavy metals was applied to a multi-layer perceptron (MLP) neural network technique for simulation. 
The performance of the reactor was evaluated with this robust model using the experimental data 
obtained under varying heavy metal concentrations in the sludge. Agitation time, pulp density of the 
sludge, and pH were used as inputs for the model, whereas the heavy metals (Cd, Cr, Cu, Ni, Pb, and 
Zn) concentrations were the output variables. The results of the models were compared using statistical 
criteria such as mean square error (MSE), mean absolute error (MAE), mean absolute relative error 
(MARE), and determination coefficient (R

2
). The results show that the MLP neural network produced 

highly accurate estimation of the aforementioned metals with R
2
 over 97.9%. 
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INTRODUCTION 
 
The process of bioleaching offers a pollution-less low 
cost and low energy approach for metals extraction from 
low-grade ores, soil or mine tailings by chemolithotrophic 
bacteria, heterotrophic bacteria or fungi as previuosly 
reported (Mazuelos et al., 1999; Bevilaqua et al., 2002; 
Mandal and Banarjee, 2004; Chatain et al., 2005; Shi and 
Fang, 2005; Fang and Zhou, 2006; Wu and Ting, 2006; 
Vestola et al., 2010). Among these microorganisms, 
Thiobacillus thiooxidans and Thiobacillus ferrooxidans 
are more commonly used for the bioleaching of sulfide 
minerals (Donati et al., 1996; Das et al., 1999; Falco et 
al., 2003). 

Many of exterior  physical  (adsorption-desorption,  pulp  

 
 
 
Abbreviations: CMB, Completely mixed batch; MLP, multi-
layer perceptron; MSE, mean square error; MAE, mean 
absolute error; MARE, mean absolute relative error; R

2
, 

determination coefficient. 

density, particle size, agitation and temperature), 
biological (growth rate and cell concentration), chemical 
(pH and medium composition), and electrochemical 
(redoks potential) parameters have been determined to 
have an influence on the performance of the bioleaching 
process. The common mathematical models that are built 
based on these parameters and used in bioleaching 
applications have some advantages and disadvantages 
such as models of Kumar and Gandhi, Lacey and 
Lawson, Blancarte-Zurita and Branion, Konishi and 
Katoh, Sanmugasunderam and Branion, and Hanson, etc 
(Haddadin et al., 1995). In order to manage an optimum 
bioleaching process and effluent heavy metals 
concentrations, appropriate models that completely 
defines the system are required. In an effort to control the 
performance of the system, it is imperative to use 
thorough models that are dependent on the determination 
of specific parameters and hence predict the process 
performance based on these parameters.  

Biological  systems  are  non-linear,  ever   progressing, 
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Table 1. Physicochemical characteristics of the dewatered metal 
plating sludge samples.  
 

Characteristic Value 

Solids (wt.%) 4.11 - 4.95 

pH 9.01 - 9.45 

Particle size (mm) d90 < 0.125 

  

Concentration of heavy metals (mg/kg) 

Zn 22900 - 22980 

Pb 828 - 850 

Ni 601 - 729 

Cu 625 - 691 

Cd 325 - 341 

Cr 210 - 212 
 
 
 

and highly complex systems. Artificial neural network 
(ANN) have found vast application for biological systems 
and therefore its importance and favourability have 
increased greatly. Mathematical modeling of non-linear 
and complex biological systems offer a difficult task for 
the interested. Therefore, the regression models have 
been used to model most biological systems due to their 
wide range of application. However, regression models 
have proven to err in the determination of some data that 
are not required to be used for especially the regression 
equation. It has been shown by Mohanty et al. (2002) that 
the ANN models have better simulated the biological 
systems as compared to the regression models. The use 
of neural networks to predict the solubilization of heavy 
metals originating from municipal wastewater treatment 
sludges has already been presented by Du et al. (1994) 
who used Th. thiooxidans and Thiobacillus thioparus in 
batch systems. The authors have demonstrated that a 
neural network with input variables of type of sludge, 
initial metal concentrations and pH could satisfactorily 
predict heavy metal solubilization.  

Since the 1990s, the studies on biological systems and 
bioleaching has shown that ANN-based models 
demonstrated better prediction performance for complex 
biological systems with numerous non-linearly correlated 
parameters as compared to conventional mathematical 
and statistical models (Acharya et al., 2006; Ozkaya et 
al., 2008; Liu et al., 2008; Jorjani et al, 2007; Nurmi et al., 
2010; Laberge et al., 2000). In this study, a new ANN 
model was proposed for the estimation of heavy metal 
concentrations in a completely mixed batch reactor as an 
alternative to the conventional methods. The predictive 
ability of the proposed model was assessed using some 
statistical criteria - mean square error (MSE), mean 
absolute error (MAE), mean absolute relative 
error (MARE) and and determination coefficient (R

2
).  

 
 

MATERIALS AND METHODS 
 

The  methodology  followed  in   this   study   has   been   previously 
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described in details (Bayat and Sari, 2010a). Therefore, the 
materials and methods were concisely described herein. The 
dewatered metal plating sludge samples studied were collected in 
polyethylene bags from the Karme Metal Plating Industries in Fatsa-
Ordu, Turkey. The physicochemical characteristics of the 
dewatered sludge samples are presented in Table 1. All analyses 
were carried out in duplicate (Bayat and Sari, 2010a, b). The 
biological leaching experiments were carried out in a completely 
mixed batch (CMB) reactor with a volume of 3 L and dimensions of 
15 cm inner diameter (ID) and 17 cm height equipped with pH and 
temperature controllers, a stirrer, and an aerator system (Figure 1) 
(Bayat and Sari, 2010a).  

 
 
Artificial neural network approach 

 
ANN has the ability to learn from examples, recognize a pattern in a 
group of data, adapt solutions over time, and process information 
rapidly. The application of ANN to issues related to wastewater 
treatment and water resources conservation is rapidly gaining 
popularity due to their immense power and potential in the mapping 

of nonlinear system data. In the context of hydrological forecasting, 
recent studies have reported that ANN technique may offer a 
promising alternative for bioleaching (Acharya et al., 2006; Ozkaya 
et al., 2008; Liu et al., 2008; Jorjani et al, 2007; Nurmi et al., 2010; 
Laberge et al., 2000), rainfall–runoff modeling (Lin and Chen, 
2004), stream-flow prediction (Raman and Sunilkumar, 1995; Kisi, 
2004a), suspension of sediments (Kisi, 2004b), water resources 
(Cobaner et al., 2008), reservoir inflow forecasting (Coulibaly et al., 
2005) and treatment of wastewater (Elmolla et al., 2010; Pai et al., 
2009; Chen and Lo, 2010). The variation in the characteristics of a 
bioleaching system may be non-linear and multivariate, and the 
variables involved may have complex inter-relationships. For most 
cases, ANNs provide more reliable estimates for dependent 
variables of concern. The processes that involve several 
parameters are easily amenable to neuro-computing.  

Among the many ANN structures that have been studied, the 
most widely used network structure is the multilayer perceptron 

(MLP) network. An ANN consists of a number of data processing 
elements called neurons or nodes, which are grouped in layers. 
The input layer of neurons receives the input vector and transmits 
the information to the next layer with the help of cross connections. 
In the current study, a MLP modeling technique was applied. 

 
 
Multi-layer perceptron (MLP) neural network 

 
A MLP distinguishes itself by the presence of one or more hidden 
layers, whose computation nodes are correspondingly called 
“hidden neurons of hidden units”. The function of hidden neurons is 
to intervene between the external input and the network output in 
some useful manner. By adding one or more hidden layers, the 
network is enabled to extract higher order statistics. In a rather 
loose sense, the network acquires a global perspective despite its 
local connectivity due to the extra set of synaptic connections and 

the extra dimension of NN interconnections. The detailed 
theoretical information about MLP can be found in Haykin (1998). 

The MLP network used in the current study is shown in Figure 2. 

Index  is referred to as the individual output layer neurons, the 

indices  and  refer to as the input neurons and the hidden layer 

neurons, respectively, while  and  represent the connection 

weights between the hidden-input layer and hidden-output layer, 
respectively. A hidden-layer neuron produces the following as 
output: 
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Figure 1. Schematic diagram of bioleaching experiments.  

 
 
 

 
 

Figure 2. The MLP model network. 
 
 
 

 
 

While an output-layer neuron produces the following as output; 
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Table 2. Minimum and maximum values of input and output parameters. 
 

Model parameter 
Training data set  Testing data set 

Min Max  Min Max 

Agitation time 1 20  2 19 

Pulp density 0.02 0.24  0.08 0.18 

pH 1.95 8.88  2.67 8.26 

Zn 187.23 3358.42  642.32 2151.77 

Cu 0.38 80.38  2.61 80.38 

Cr 0.01 8.36  0.11 8.32 

Cd 0.05 28.58  0.68 28.57 

Ni 0.56 99.54  2.14 78.2 

Pb 0.02 71.35  0.11 71.31 
 
 
 

Where  is the output of the  neuron in the hidden layer;  is  

the input of the  neuron in the input layer;  is the output of the 

 neuron in the output layer; and  are the threshold values, 

also called the bias, associated with the hidden and output nodes, 

respectively; and  denotes the activation function. Each neuron 

multiplies every input by its interconnection weight, sums the 
product, and then passes the sum through a transfer function to 
produce its result. This transfer function is usually a steadily 
increasing S-shaped curve, called a sigmoid function.  

The MLP can have more than one hidden layer. However, 
theoretical works have shown that a single hidden layer is sufficient 
for MLP to approximate any complex nonlinear function (Maier and 
Dandy, 1996; Onkal at al., 2005). Therefore, in this study, one-
hidden-layer MLP was used. Throughout all MLP simulations, the 
adaptive learning rates are used to speed up training. The numbers 
of hidden layer neurons are found using simple trial-and-error 
method in all applications. The sigmoid and linear functions are 

used for the activation functions of the hidden and output nodes, 
respectively. Some of the recent studies have reported that the 
performance of MLP was superior to conventional statistical and 
stochastic methods (Kisi, 2004a, b). Multilayer perceptions can get 
trapped in a local minimum when they try to find the global 
minimum of the error surface.  

Maier and Dandy (2000) summarized the methods used in the 
published literature to overcome the local minima problem, such as 
training a number of networks starting with different initial weights, 

an on-line training mode to help the network escape local minima, 
inclusion of the addition of a random noise, and employment of 
second order schemes, such as Newton–Raphson and Levenberg–
Marquardt algorithms, or global methods such as stochastic 
gradient algorithms and simulated annealing. Other ANN methods, 
such as conjugate gradient algorithms, the radial basis function, the 
cascade correlation algorithm, and recurrent neural networks, were 
briefly explained in the report by the ASCE Task Committee on 

Application of Artificial Neural Networks in Hydrology (2000a, 
2000b). 
 
 
Levenberg-Marquardt algorithm 

 
In the present study, the Levenberg–Marquardt algorithm was 
employed because this algorithm is more powerful than the 
conventional gradient descent techniques (Hagan and Menhaj, 

1994). The Levenberg–Marquardt algorithm is an approximation of 
Newton’s method and is very efficient for training networks with up 
to a few hundred weights. Although the computational load of the 

Levenberg–Marquardt algorithm is greater than that of other 
techniques, this is compensated by the increased efficiency and 
much better precision in results. In many cases, the Levenberg–

Marquardt algorithm was found to converge when other back-
propagation techniques diverged (Hagan and Menhaj, 1994).  
 
 
Determination of an appropriate ANN model 

 
Determining an appropriate architecture of a neural network for a 
particular problem is an important issue as the network topology 

directly affects its computational complexity and its generalization 
capability. MLP model with one hidden layer can approximate any 
complex non-linear function provided sufficient amount of hidden-
layer neurons are available (Hornik et al., 1989). Indeed, many 
experimental results seem to confirm that one hidden layer may be 
enough for most forecasting problems (Coulibaly et al., 1999). 
Therefore, in this study, one hidden-layer MLP model was used. 
Generally, the number of hidden layer neurons is determined by a 
trial-and-error method. A common strategy for finding the optimum 
number of hidden-layer neurons is to start with a small number of 
neurons and increase their number while monitoring the 
performance criteria until no significant improvement is observed 
(Goh, 1995). 

 

 
RESULTS AND DISCUSSION 
 
In this study, the concentration of each heavy metal (Cd, 
Cr, Cu, Ni, Pb, and Zn) was the dependent variable, while 
the independent variables were the agitation time, pulp 
density, and pH. The minimum and maximum values for 
the model variables are provided in Table 2. There are no 
acceptable rules to determine the optimum size of the 
training data set. The networks are not very sensitive to 
the number of training data, but very sensitive to the 
number of testing data. Attempts at reducing the training 
data size resulted in poor generalization capabilities in 
the testing phase. Therefore, the available data set was 
partitioned into a training set and a testing set with 75 
and 25% of the available experimental measurements 
selected for training and testing phases, respectively. 
Before the training phase of the network, both input and 
output variables were normalized within the range of 0.1 
to 0.9 as follows: 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1P-4W73H42-1&_user=613195&_coverDate=10%2F31%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000031979&_version=1&_urlVersion=0&_userid=613195&md5=e0255a98e5010f05649df192ad36ec92#tbl1#tbl1
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Table 3. Statistical assessment of MLP-LM models for both training and testing phases. 
 

Parameter Criteria 
Training Testing 

MLP-LM MLP-LM 

Cr 

MAE 0.1334 0.2581 

MSE 0.0306 0.1936 

MARE 100.9855 13.7304 

R
2 

0.9908 0.9812 

    

Zn 

MAE 2.6844 2.4645 

MSE 15.5973 10.5366 

MARE 22.6989 12.3220 

R
2 

0.9854 0.9840 

    

Cu 

MAE 0.3549 0.9755 

MSE 0.2095 1.7330 

MARE 26.6762 11.2191 

R
2 

0.9946 0.9791 

    

Cd 

MAE 76.8961 29.6200 

MSE 9007.5130 1397.3167 

MARE 9.1677 2.4401 

R
2 

0.9933 0.9942 

    

Ni 

MAE 0.8476 1.0613 

MSE 1.2370 1.6854 

MARE 18.4977 4.2652 

R
2 

0.9962 0.9976 

    

Pb 

MAE 0.5585 2.2865 

MSE 0.7503 10.7273 

MARE 26.4042 20.1662 

R
2 

0.9971 0.9804 

 
 
 
 

 

 

 [3] 
 

 

Where  is the normalized value of a certain parameter, 

 is the measured value for this parameter,  and 

 are the minimum and maximum values in the 

database for this parameter, respectively. 
For all created neural networks, the general structure of 

input, one hidden, and one output layer was used. In 
order to determine the optimal architecture, several 
neural networks were trained with different iteration 
number (epoch) and number of nodes in the hidden layer. 
For all cases, a “log sigmoid transfer function (log sig)” 
was used in the hidden and output layers. When the log 
sig was applied, the inputs and the outputs were 
normalized within the range of 0 to 1. The most accurate 
estimations of the ANNs were obtained with logarithmic 

sigmoid transfer function. The best MLP results were 
obtained from the ANN (4, 6, 1) model using the 
logarithmic sigmoid activation functions for both hidden 
and output layer neurons, respectively.  

The MAE, MSE, MARE and R
2
 values of ANNs for both 

training and testing phases are given in Table 3. The 
MAE, MSE and MARE are defined as follows: 
 

 
 

 
 

 

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V1P-4W73H42-1&_mathId=mml48&_user=613195&_cdi=5680&_pii=S0965997809000842&_rdoc=1&_issn=09659978&_acct=C000031979&_version=1&_userid=613195&md5=c1fb0925afbfb651df1b712bb6054024
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1P-4W73H42-1&_user=613195&_coverDate=10%2F31%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000031979&_version=1&_urlVersion=0&_userid=613195&md5=e0255a98e5010f05649df192ad36ec92#tbl2#tbl2
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Figure 3. Comparison between observed and predicted heavy metal concentrations in 

training phase. 
 

 
 

In Equations [4], [5] and [6], Y denotes the heavy metal 
concentrations and N is the total number of data. The 
MLP model was trained, tested and then the results were 
compared by means of MSE, MAE, MARE and R

2
 

statistics as shown in Table 3. As shown in Table 3, the 
MLP has the capability of modeling heavy metal 
concentrations. The performance of the MLP model 
analyzed herein is shown in Figures 3 and  4  for  training  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1P-4W73H42-1&_user=613195&_coverDate=10%2F31%2F2009&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000031979&_version=1&_urlVersion=0&_userid=613195&md5=e0255a98e5010f05649df192ad36ec92#tbl2#tbl2
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Figure 4. Comparison between observed and predicted heavy metal concentrations in testing 

phase. 
 

 
 

and testing phases, respectively. As shown in these 
figures, the MLP produced highly accurate results in the 

estimation of heavy metal concentrations for both training 
and testing phases. 



 
 
 
 
Conclusions 
 
All biological models commonly used are developed 
using mass, energy, and momentum conversion. 
Moreover, most models have generally failed to define 
and predict the real system performance and behavior in 
advance during microbiological growth and bioleach. The 
development of practical mathematical models for these 
processes is difficult due to many affecting factors. The 
prediction models such as ANNs demonstrate stronger 
and more realistic behavior in predicting the complex 
non-linear and ever changing conditions of biological 
processes. ANN applications were previously used in 
some studies to predict the leaching of metals for 
bioleaching processes with similar or different 
microorganism groups and sludges from different 
industries and applications (Du et al., 1994; Acharya et 
al., 2006; Ozkaya et al., 2008; Liu et al., 2008; Jorjani et 
al, 2007; Nurmi et al., 2010; Laberge et al., 2000).  

In this study, a three layer feed forward MLP neural 
network model was developed to predict the effluent 
heavy metal concentrations of bioleaching technique 
involving A. ferrooxidans in dewatered metal plating 
sludge containing no sulfide or sulfate compounds. The 
ability of multi-layer perceptron (MLP) neural network in 
the estimation of the effluent heavy metal concentrations 
in the CMB reactor was assessed in this paper by 
comparing the results with observed concentrations of 
heavy metals, namely Cd, Cr, Cu, Ni, Pb, and Zn. From 
the results obtained, the MLP technique with a 
Levenberg-Marquardt algorithm used in the current study 
appears to be a useful tool for the prediction of the 
effluent heavy metal concentrations in the CMB reactor. 
The results showed that the MLP neural network 
produced highly accurate estimation (R

2
 over 97,9%) of 

the aforementioned metals. The results of this study 
support the findings of previous studies indicating that 
ANN is a strong modeling tool for the performance 
prediction of non-linear and time dependent biological 
processes.  
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