Main Article Content
Isolation of AhDHNs from Arachis hypogaea L. and evaluation of AhDHNs expression under exogenous abscisic acid (ABA) and water stress
Abstract
The peanut (Arachis hypogaea L.) is an important oil and cash crop all over the world. It is mostly planted in arid and semi-arid regions. To determine the mechanism by which dehydrins (DHNs) are regulated by abscisic acid (ABA) in peanuts, three Arachis hypogaea L. dehydrins (AhDHNs) were isolated from peanut plants and sequenced. By blasting the protein sequences of these AhDHNs, AhDHN1 was found belonging to the YnSKn subfamily. AhDHN2 and AhDHN3 were found belonging to the SKn and YnKn types, respectively. 100 μM ABA enhanced AhDHNs expression in peanut leaves. When peanut plants were treated with ABA and then with the ABA synthesis inhibitor sodium tungstate 12 h later, AhDHN expression was suppressed. However, AhDHN2 was inhibited by sodium tungstate at 2 h, though other AhDHNs were not. AhDHNs expressions increased greatly in peanut leaves treated with 30% polyethylene glycol (PEG). Sodium tungstate along with PEG inhibited the expression of AhDHNs. This study found that exogenous and endogenous ABA can both affect the expression of AhDHN independently. The differential expression of AhDHNs to exogenous ABA may be because of differences in the structure of different AhDHNs.
Keywords: Arachis hypogaea L. dehydrins (AhDHNs), peanut, abscisic acid (ABA), expression, sodium tungstate, water stress