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Classification and prediction of different cancers based on gene-expression profiles are important for 
cancer diagnosis, cancer treatment and medication discovery. However, most data in the gene 
expression profile are not able to make a contribution to cancer classification and prediction. Hence, it 
is important to find the key genes that are relevant. An entropy-based improved k-top scoring pairs 
(TSP) (Ik-TSP) method was presented in this study for the classification and prediction of human 
cancers based on gene-expression data. We compared Ik-TSP classifiers with 5 different machine 
learning methods and the k-TSP method based on 3 different feature selection methods on 9 binary 
class gene expression datasets and 10 multi-class gene expression datasets involving human cancers. 
Experimental results showed that the Ik-TSP method had higher accuracy. The experimental results 
also showed that the proposed method can effectively find genes that are important for distinguishing 
different cancer and cancer subtype. 
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INTRODUCTION 
 
Classification and prediction of different cancers based 
on gene-expression profiles have recently received a 
great deal of attention in the field of bioinformatics (Golub 
et al., 1999; Khan et al., 2001; Hedenfalk et al., 2001). 
Recently, many gene selection methods have been 
developed: a method of key genes selection using SVM 
by Guyon et al. (2002); a method of classifying cancers to 
specific four distinct diagnostic categories based on their 
gene expression signatures using artificial neural 
networks (ANNs), a sensitivity analysis method to find 
key genes by Khan et al. (2001); and a method of finding 
key genes using Bayesian method by Zhou et al. (2004). 

At present, there are many machine learning methods 
for the classification of cancers. Li and Ruan, (2005) first 
used the exponential of classification information of gene  
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for  data   pre-processing   by   selecting  the  genes  with 
classification characters and removing the unconcerned 
ones. Then they used support vector machine (SVM) to 
predict cancer classes. Li et al. (2002) also introduced an 
unsupervised gene filtering algorithm to reduce the data 
noise of subtype calculation. First, they presented a 
probabilistic model for classification in the sample, and 
then they used the relative entropy method to acquire the 
genes with the greatest classification contribution as key 
genes based on the results of the gene cluster. Finally, 
they applied the cluster of key genes to the classification 
of cancers. Liu et al. (2006) predicted the category of the 
testing sample data by comparing an expansive topology 
map with the primitive topology map, and finding the two 
most similar topology maps by using the characteristic 
information of the topological map. In addition, Zhou et al. 
(2004) presented a logarithm recursive method to classify 
cancers, while Helman et al. (2004) used a Bayesian 
network method. Furthermore, Geman et al. (2004) 
presented a classification approach completely based on  



 
 
 
 
the top scoring pair (TSP) with relative value of the gene 
expression. They first calculated the probability for every 
two genes in various category samples that the gene 
expression level value of one gene is higher than the 
other; then they chose one pair of genes with the highest 
probability. The TSP classifier is an entirely data-driven 
machine learning approach without any parameter. The 
classification rules of TSP contain only a pair of genes. 
Moreover, because in some datasets the classification 
rules of TSP classifier will change with the addition or 
deletion of training samples, Tan et al. (2005) proposed 
an improved method named "k-TSP method" for binary 
class datasets and a HC-k-TSP scheme for dealing with 
multi-class datasets. These methods choose the k 
disjoint top scoring pairs of genes as decision rules rather 
than only the highest pair and both methods need to 
calculate the score of each gene pair. However, cancer 
datasets have a huge size (the datasets considered in 
this paper contained at least 2,000 genes), thus the two 
algorithms suffer both high time and space consumption. 
Also, the presence of genes which are irrelevant to 
cancer classification influences the accuracy of 
classification. These limitations show the importance of 
key genes selection for k-TSP and HC-k-TSP method. 

In order to evaluate the ability of Ik-TSP method in 
cancer classification, we took 9 binary class gene 
expression datasets and 10 multi-class gene expression 
datasets, which were used by Tan (2005), as our 
experimental datasets. We then compared our method 
with five other machine learning methods. It was 
demonstrated that the proposed Ik-TSP method obtained 
an average of 96.28% accuracy, which was the best 
classifier in 9 binary class datasets and 87.32% accuracy 
which was the third best one in 10 multi-class datasets. 
We also compared our method with k-TSP method based 
on other feature selection methods, and it was found that 
Ik-TSP method obtained the best accuracy. 

 
 
METHODS  

 
The k-TSP method 

 
Assuming that a gene expression profile consists of expression 

values of P genes  1,2,..., P and there are N 

profiles 1 2, ,..., NX X X available for training. 
1 2

( , , , )Ny y y is the 

vector of class labels for the N samples, 

where 1 2{ , , , }n my c C C C  , which is the set of possible class 

label. For example, 1C  refer to the normal tissues and 2C  to the 

cancer tissues. Tan et al. (2005) replaced the expression values 

,i nx  by their ranks ,i nR for comparing their relationship as shown 

in the following formulas. The aim was to find the ‘marker gene 

pairs’  ,i j   , 1,2,...,i j P  and i j , which have a significant 

difference in the probability of the event { i jR R } across the N 

samples from class 1C  and 2C . Here, the quantities of interest 

are: 
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     Pr | , 1,2ij m i j mp C ob R R Y C m                                 (1) 

 

Using ij  to represent the ‘score’ of the gene pair  ,i j , ij can 

be defined as: 
 

   1 2| |ij ijij p C p C                                                             (2) 

 

Hence, we can compute the ‘average rank difference’ ijr  in 

class mC , which is defined as: 
  

 
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                                  (3) 

 

Where, mC  denotes the number of samples in the class mC . The 

‘rank score’ of the gene pair  ,i j  is then defined as: 

 

1 2( ) ( )ij ij ijr C r C                                                                   (4) 

 

Tan et al. (2005) selected the gene pairs with the largest rank score 

among the gene pairs with the score max . Given a new 

profile newx , the newy is predicted according to the t-th single gene 

pair  ,i j  as follows. If 1 2( ) ( )ij ijp C p C then: 

 

 
1 ,new ,new
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,      if  

,      otherwise
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
                       (5) 

 
Otherwise, the decision rule is reversed. Tan et al. (2005) also 
employed an unweighted majority voting procedure based on k top 
scoring disjoint pairs of genes to compute the class of the new 

sample. The predictive formula is defined as follows: 
 

    
1 2

arg  max   

1,

new k new t new

k
y h TSP x I h x c

tc C C

   


        (6) 

 
Where: 
                    

  
 

 1 2

1   if  
,   ,

0   otherwise

t new

t new

h x c
I h x c c C C

 
  


                (7) 

 

Since the k-TSP method is essentially an exhaustive algorithm for 
gene pairs, the time and space consumption quadratically increase 
in the number of genes, even using pruning algorithm (Tan et al., 
2005). Frequently, the final number of genes that are actually used 
in the classification is very small in most classification methods 

compared with the large number of genes in the datasets. This 
observation suggests that there are a large number of genes which 
are not relevant to cancer classification in the dataset; hence gene 
selection is very important as this could increase the accuracy and 
decrease the time and space requirement of the classification. 
Therefore, this study proposed an improved k-TSP method 
(referred to as Ik-TSP method) that uses the information entropy to 
select the key genes in the gene expression data. Some 

classification   methods,   example   SVMs, TSP and k-TSP,  are 
designed only for binary class datasets. Tan et al. (2005) 
investigated  the  performance  of  the  k-TSP  classifiers  for  three  
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different classification schemes for m classes. These are the One-
vs.-Others (1-vs-r) scheme, the One-vs.-One (1-vs-1) scheme and 
the hierarchical classification (HC) scheme. The hierarchical 
classification (HC) scheme was used for k-TSP method in this 
study. 
 

 
The improved k-TSP method based on Information entropy 

 
Information entropy has been widely used in the field of 
classification (Shannon et al., 2003; Wei et al., 2004). Since there 
are a lot of uncertain factors involved in the information contained in 
the data, we selected the attributes that contained large amount of 
certain information in the classification, as they are specially 
important for classification. Information Entropy reflects the content 
of certain information contained in an attribute. The definition of the 
information entropy is as follow: 
 

log( )i i
i

H p p                                                             (8) 

 

Where, 
ip  denotes the probability of the object in the i-th class in 

all the samples, which generally can be estimated by the frequency 
of the object in that class in the dataset. The greater certain 
information is, the smaller the information entropy. 

For cancer classification, the information provided by each gene 
for the classification is different. In fact, some genes do not provide 
any information for classification, while others could determine the 
class of the sample; hence the latter genes are important and called 

key genes. Our method used the information entropy to select a 
group of key genes. The method removes the genes which contain 
little information, by choosing a set of genes whose information 
entropy is small. This method not only reduces the amount of data 
for classification, but also avoids the negative effects on the 
classification performance due to equal treatment of genes with 
different information content. Accordingly, the accuracy will be 
improved. 

For a discrete attribute, it is easy to calculate the information 

entropy while the variable takes different values for classification. 
However, for a continuous attribute, it is hard to calculate the 
information entropy for classification, while the variable takes every 
possible value. The expression value of each gene in the dataset of 
gene expression profiles for cancer classification is continuous, so 
each attribute need to be discretized. In this paper, the 
discretization is included in the algorithm for the key genes 
selection method based on information entropy described as 
follows: 
  
Input: S training samples, N genes and threshold H. 

Output: A set   of key genes. 

1. For i =1 to N step 1 do 
 
a. Make an order list O of samples according to the expression 
value of the i-th gene in all samples from largest to smallest, and 

set maximal entropy iE . 

b. Repeat m times: (m = S - 2n + 1, n is the number of samples in 
minimal set of samples, n = 3 in this study) 

(1)Select first n samples from list O, calculate entropy 1h  for gene 

i against the n samples. 

(2)Calculate entropy 2h  for gene i against all samples except for 

the n samples. 

(3) 1 2( / ) (( ) / )iH n S h S n S h   . 

(4) If i iH E , then i iE H   

(5) n=n+1. 

 
 
 
 
2. Set an entropy threshold H. 

3. Make a list  , if iE H for gene i, then add gene i into  . 

4. Return list  . 

 

First, the expression values are arranged in descending order for 
each gene i in the gene expression profile. Secondly, the first three 
samples are selected as a group to calculate the corresponding 
information entropy, and then the information entropy is calculated 
using the remaining samples and sum up them. Next, the first four 
samples are chosen as a group to calculate the corresponding 
information entropy, and the information entropy is calculated using 
the remaining samples and sum up them, for S-2n+1 times. Finally, 
a threshold for the entropy is set, and a set of genes is constructed, 

which consists of all the genes whose information entropy is less 
than the threshold to be used as key genes set by k-TSP and HC-k-
TSP method. 

We selected different key genes sets based on the different 
entropy threshold ranges for different datasets. Since there are both 
a testing set and a training set for each multi-class gene expression 
dataset, but there is only a training set for each binary class gene 
expression dataset, we used different ways of selection of the key 
genes for multi-class and binary class gene expression datasets. 

For binary class gene expression datasets, we selected key genes 
depending on the dataset obtained leaving one sample out from the 
whole training dataset. Whereas for multi-class gene expression 
datasets, key genes are selected depending on the whole training 
dataset. 

 This meant that we used key genes selection method based on 
information entropy only once for multi-class dataset and many 
times for binary class gene expression dataset. 
 
 

Microarray data 
 

In order to validate the effectiveness of the Ik-TSP method, we 
compared Ik-TSP method with other machine learning methods and 
k-TSP method based on other feature selection methods. We used 
data downloaded from Tan et al. (2005). There are 9 binary class 
gene expression datasets and 10 multi-class gene expression 

datasets involving human cancers. The information about the 
datasets is shown in Tables 1 and 2. 
 
 

Other machine learning methods and feature selection 
methods 
 

We compared the performance of the Ik-TSP classifier with some 
well-known machine learning methods for cancer classification 

including C4.5 decision trees (DT), Naive Bayes (NB), k-nearest 
neighbor (k-NN), support vector machines (SVM) and prediction 
analysis of microarrays (PAM). The results for these five methods 
are available from Tan et al. (2005).  

The Ik-TSP method is an improved k-TSP method based on 
information entropy feature selection method. In order to compare 
our feature selection method with other feature selection methods, 
we compared the Ik-TSP method with the k-TSP method based on 
other feature selection methods, including Relief, Sequential 
Floating Forward selection method (sffs) and Sequential Forward 
Selection method (sfs) (Acu, 2003). These compared methods are 
the functions in dprep package based on R language 
(http://cran.stat .ucla.edu/src/contrib/Archive/dprep/). 

 
 

RESULTS 
 

Comparison with machine learning methods 
 

Here, the Leave-One-Out Cross-Validation (LOOCV) was 
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Table 1. Binary class gene expression datasets. 
  

Dataset No. of genes (P) 
No. of samples (N) 

Reference 
C1 C2 

Colon 2000 40 (T) 22 (N) (Alon et al., 1998) 

Leukemia 7129 25 (AML) 47 (ALL) (Golub et al., 1998) 

CNS 7129 25 (C) 9 (D) (Pomeroy et al., 1998) 

DLBCL 7129 58 (D) 19 (F) (Shipp et al., 1998) 

Lung 12533 150 (A) 31 (N) (Gordon et al., 1998) 

Prostate1 12600 52 (T) 50 (N) (Singh et al., 1998) 

Prostate2 12625 38 (T) 50 (N) (Stuart et al., 1998) 

Prostate3 12626 24 (T) 9 (N) (Welsh et al., 1998) 

GCM 16063 190 (C) 90 (N) (Ramaswamy et al., 1998) 
 
 
 

Table 2. Multi-class gene expression datasets. 
  

Dataset 
Number of 

classe 
Number of gene 

(P) 

Number of sample (N) 
Reference 

Training Testing 

Leukemia1 3 7129 38 34 (Golub et al., 1999) 

Lung1 3 7129 64 32 (Beer et al., 2002) 

Leukemia2 3 12582 57 15 (Armstrong et al., 2002) 

SRBCT 4 2308 63 20 (Khan et al., 2001) 

Breast 5 9216 54 30 (Perou et al., 2000) 

Lung2 5 12600 126 67 (Bhattacharjee et al., 2001) 

DLBCL 6 4026 58 30 (Alizadeh et al., 2000) 

Leukemia3 7 12558 215 112 (Yeoh et al., 2002) 

Cancers 11 12553 100 74 (Su et al., 2001) 

GCM 14 16063 144 46 (Ramaswamy et al., 2001) 
 
 

 
Table 3. LOOCV accuracy of classifiers for binary class gene expression datasets (%). 
 

Method Leukemia CNS DLBCL Colon Prostate1 Prostate2 Prostate3 Lung GCM Average 

TSP 93.80 77.90 98.10 91.10 95.10 67.60 97.00 98.30 75.74 88.26 

k-TSP 95.83 97.10 97.40 90.30 91.18 75.00 97.00 98.90 85.40 92.36 

Ik-TSP 100 94.12 98.70 93.55 98.04 90.91 100 99.45 91.79 96.28 

DT 73.61 67.65 80.52 80.65 87.25 64.77 84.85 96.13 77.86 79.25 

NB 100 82.35 80.52 80.65 87.25 73.85 90.91 97.79 84.29 81.17 

k-NN 84.72 76.47 84.42 74.19 76.47 69.32 87.88 98.34 82.86 81.63 

SVM 98.61 82.35 97.40 82.26 91.18 76.14 100 99.45 93.21 91.18 

PAM 97.22 82.35 85.71 85.48 91.18 79.55 100 99.45 79.29 88.91 
 

The best prediction rate for each dataset was highlighted in boldface. 
 
 

 

employed to estimate the classification error rate for 
binary class dataset. For multi-class dataset, the 
accuracy for the testing dataset was directly the result. In 
Table 3, the Ik-TSP method was the best as it performed 
an average of 96.28% in the LOOCV accuracy, followed 
by k-TSP (92.36%), SVM (91.18%) etc. Ik-TSP out-
performed k-TSP in eight cases (Leukemia, DLBCL, 
Colon, Prostate1, Prostate2, Prostate3, Lung and GCM), 
while k-TSP outperformed Ik-TSP in one cases (CNS). In 

Table 4, the proposed Ik-TSP method showed the third 
best performance over the 10 datasets, but did not 
exceed the 1-vs-1-SVM (88.11%) and PAM (88.50). The 
Ik-TSP achieved an average accuracy of 87.32%. 
Compared with HC-k-TSP, the Ik-TSP was superior in 
five cases (Leukemia1, Lung1, Breast, DLBCL and 
Cancer), inferior in three cases (Lung2, Leukemia3 and 
GCM) and the same in two cases (Leukemia2 and 
SRBCT). 
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Table 4. Accuracy of classifiers for multi-class gene expression datasets (%). 
 

Method Leu1 Lung1 Leu2 SRBCT Breast Lung2 DLBCL Leu3 Cancers GCM Average 

TSP 97.06 71.88 80.00 95.00 66.67 83.58 83.33 77.68 74.32 52.17 78.17 

k-TSP 97.06 78.13 100 100 66.67 94.03 83.33 82.14 82.43 67.39 85.12 

Ik-TSP 100 84.38 100 100 83.33 92.54 93.33 65.18 89.19 65.22 87.32 

DT 85.29 78.13 80.00 75.00 73.33 88.06 86.67 75.89 68.92 52.17 76.35 

NB 85.29 81.25 100 60.00 66.67 88.06 86.67 32.14 79.73 52.17 73.20 

k-NN 67.65 75.00 86.67 30.00 63.33 88.06 93.33 75.89 64.86 34.78 67.96 

SVM 79.41 87.50 100 100 83.33 97.01 100 84.82 83.78 65.22 88.11 

PAM 97.06 78.13 93.33 95.00 93.33 100 90.00 93.75 87.84 56.52 88.50 
 

The best prediction rate for each dataset was highlighted in boldface. 
 
 

 
Table 5. LOOCV accuracy of feature selection methods for binary class gene expression datasets (%). 

 

Method Leukemia CNS DLBCL Colon Prostate1 Prostate2 Prostate3 Lung GCM Average 

Ik-TSP 100 94.12 98.70 93.55 98.04 90.91 100 99.45 91.79 96.28 

Relief 97.22 97.06 98.70 91.94 94.12 89.77 96.97 99.45 92.14 95.19 

sffs 18.31 0 26.32 31.15 53.47 0 0 16.11 65.97 23.48 

sfs 28.17 100 72.37 42.62 50.01 32.20 0 81.11 75.32 53.53 
 
 

Table 6. Accuracy of feature selection methods for multi-class gene expression datasets (%). 

 

Method Leu1 Lung1 Leu2 SRBCT Breast Lung2 DLBCL Leu3 Cancers GCM Average 

Ik-TSP 100 84.38 100 100 83.33 92.54 93.33 65.18 89.19 65.22 87.32 

Relief 82.35 65.63 93.33 95.00 73.33 77.61 90.00 84.82 83.78 60.87 80.67 

sffs 91.18 65.63 80.00 55.00 56.67 79.10 56.67 50.00 35.14 26.09 59.55 

sfs 79.41 56.25 26.67 50.00 56.67 85.07 60.00 41.07 20.27 23.91 49.93 
 
 

 

Comparison with feature selection methods 
 

In this article, the parameters for different feature 
selection methods were described as follows. For relief, 
the cut-off point to select the features was from 0.01 to 
0.1. For sffs, the classifier was k nearest-neighbors 
method (knn), in which the number of nearest neighbors 
was 5 and the number of repetitions was 5. For sfs, the 
classifier was also k nearest-neighbors method (knn), in 
which the number of neighbors to use for the knn 
classification was 3 and the number of times to repeat the 
selection was 10. Moreover, from Table 5, we could 
observe that Ik-TSP (96.28%) was a little better than 
relief (95.19%) and much better than sffs (23.48%) and 
sfs (53.53%). There were two reasons for the 
appearance of 0 in Table 5. One was that the sffs and sfs 
methods only select one gene from datasets, and the k-
TSP method which was based on the gene pairs cannot 
obtain results; the other was that it is the real result from 
the k-TSP method. Also, from Table 6 we can see that Ik-
TSP (87.32%) was a little better than relief (80.67%) and 
much better than sffs (59.55%) and sfs (49.93%). 

From the above description, it is clear that the feature 
selection method based on information entropy was best 

for k-TSP method as it enables the k-TSP method to 
obtain better accuracy. The accuracy of relief method 
was a little less than our feature selection method, so it 
was also a good choice for k-TSP method. The basic 
idea of relief method was to choose features known as 
the relevant features that can be most distinguished 
between classes. At each step of an iterative process, an 
instance x was chosen at random from the dataset and 
the weight for each feature was updated according to the 
distance of x to its near miss and near hit (Kira and 
Rendel, 1992; Kononenko et al., 1997). 

The idea of relief is different from the information 
entropy. The relief method concerns the genes that can 
distinguish different classes, while the information 
entropy method concerns the genes that contain class-
fication information. The relief method may drop some 
useful gene pairs for k-TSP method. A concrete analysis 
will be performed in our future work. 
 
 

DISCUSSION 
 

Number of genes used in classifier 
 

From the experimental results,  it  can  be  observed  that  
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Table 7. Number of genes used in the classifiers for binary class gene expression datasets. 
 

Method Leukemia CNS DLBCL Colon Prostate1 Prostate2 Prostate3 Lung GCM 

TSP 2 2 2 2 2 2 2 2 2 

k-TSP 18 2 2 18 10 2 2 14 18 

Ik-TSP 22 55 40 31 5 37 16 9 23 

DT 2 2 3 3 4 4 1 3 14 

PAM 2296 4 17 15 47 13 701 9 47 
 
 

 
Table 8. Number of genes used in the classifiers for multi-class expression datasets. 

 

Method Leukemia1 Lung1 Leukemia2 SRBCT Breast Lung2 DLBCL Leukemia3 Cancers GCM 

TSP 4 4 4 6 8 8 10 12 20 26 

k-TSP 36 20 24 30 24 28 46 64 128 134 

Ik-TSP 20 36 28 18 56 72 90 56 180 98 

DT 2 4 2 3 4 5 5 16 10 18 

PAM 44 13 62 285 4822 614 3949 3949 3338 2008 
 
 
 

the Ik-TSP method was superior compared with the 
classic methods such as PAM and SVM. The number of 
genes involved in the Ik-TSP method was significantly 
less than that in PAM in most cases, and obviously less 
than that in SVM which uses all the genes. NB, k-NN and 
SVM methods use all the genes for classification, so 
there are only TSP, k-TSP, Ik-TSP, DT and PAM method 
in Tables 7 and 8. The maximum value of k for binary 
classifier in Ik-TSP method is manually selected as 10. 

However, small perturbations in the training samples 
for DT method can lead to large differences in its tree-
structure (Dietterich, 2000; Tan and Gilbert, 2003). 
Hence, the Ik-TSP method is better than the DT, TSP 
and k-TSP method, although there are many ways to 
reduce the number of genes through using gene 
selection methods before training a classifier (Li et al., 
2004; Bø and Jonassen, 2002; Dudoit and Fridlyand, 
2003). 

 
 
Biological significance of the Ik-TSP classifier 

 
We only illustrated the rules derived from the Ik-TSP 
classifier applied to the Leukemia dataset, because 
Leukemia has been investigated for a long time and there 
are many pathway data and other data for comparison. 
By using the Ik-TSP method, we obtained some very 
important genes, and found their gene names from NCBI 
(http://www.ncbi.nlm.nih.gov/) for analyzing their impor-
tant biological signification. For binary class problem, it is 
Leukemia dataset, and for multi-class problem, it is 
Leukemia2 dataset. 

Many popular approaches such as SVM and some 
others, have predominantly focused on classification 
based on all the genes in a dataset, and do not care 
about the interrelations among genes. One way to 

address this problem is to look at gene sets rather than 
all the genes or only one gene. However, how to find the 
gene set is yet another problem. A number of methods 
and programs have been developed to solve gene 
groupings based on Gene Ontology (GO) (Gene 
Ontology Consortium, 2004). When considering the gene 
set, we can easily associate it to the pathway because 
pathways are sets of genes that serve a particular cellular 
or physiologic function. They are very important for every 
activity in life, such as biosynthesis, metabolism and so 
on. Hence, pathway-based methods present another pro-
mising approach. It is obvious that focusing pathways 
relevant to a particular phenotype, e.g. cancer, can help 
researchers to focus on a few sets of genes. They are 
particularly useful for generating further biological hypo-
theses of interest. Although the Ik-TSP method use a 
gene set for classification, it does not include the 
interrelations among genes. The interrelations among 
genes might make the Ik-TSP method getting better 
accuracy. In this paper, we also analysed the pathway 
information for genes. 
 
 

For binary class gene expression dataset 
 

There are 22 genes to distinguish ALL from AML. Among 
these 22 genes, 3 genes (CD33, Zyxin and CCND3) are 
in correlation with cancer pathogenesis (Golub et al., 
1999).  In addition, SPTAN1 is involved in Tight junction. 
FAT is an ortholog of the Drosophila fat gene, which 
encodes a tumor suppressor essential for controlling cell 
proliferation during Drosophila development, and its 
product is likely to be important in developmental pro-
cesses and cell communication. APLP2 has been linked 
with leukemia (Mutis et al., 1999; Yang, 2004). Granulins 
are a family of secreted, glycosylated peptides that are 
cleaved from a single precursor protein  with  7.5  repeats  
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of a highly conserved 12-cysteine granulin/ epithelin 
motif. The 88 kDa precursor protein, progranulin, is also 
called proepithelin and PC cell-derived growth factor. 
Cleavage of the signal peptide produces mature granulin 
which can be further cleaved into a variety of active, 6 
kDa peptides. These smaller cleavage products are 
named granulin A, granulin B, granulin C, etc. Epithelins 
1 and 2 are synonymous with granulins A and B, 
respectively. Both the peptides and intact granulin protein 
regulate cell growth. However, different members of the 
granulin protein family may act as inhibitors, stimulators, 
or have dual actions on cell growth. Granulin family 
members are important in normal development, wound 
healing, and tumorigenesis. The CYFIP2 promoter 
contains a p53-responsive element that confers p53 
binding as well as transcriptional activation of a hetero-
logous reporter. So some genes which that been used in 
Ik-TSP classifier are very important, and it is obvious that 
the accuracy is higher than other classifiers. In addition, 
TCF3 is in acute myeloid leukemia pathway, so it is 
surely important for classifying between ALL and AML. 
CD33 is in Hematopoietic cell lineage pathway. Others 
are not directly correlated with Leukemia, but it is 
possible that they are correlated with genes in the 
pathway which is correlation with Leukemia. 
 
 
For multi class gene expression dataset 
 
We used the Ik-TSP classifier to distinguish specific 
genes among three subtypes of leukemia. Armstrong et 
al. (2002) identified specific genes involved in chromo-
somal translocation of the human acute leukemia known 
as the mixed-lineage leukemia (MLL). POU2AF1 is 
observed to be differentially expressed in the cells of 
patients with chronic lymphocytic leukemia. The NF2 
gene provides instructions for the production of a protein 
called merlin, also known as schwannomin. This protein 
is made in the nervous system, particularly in specialized 
cells that wrap around and insulate nerves (Schwann 
cells). Merlin is believed to play a role in controlling cell 
shape, cell movement, and communication between 
cells. To carry out these tasks, merlin associates with the 
internal framework that supports the cell (the cyto-
skeleton). Merlin also functions as a tumor suppressor 
protein, which prevents cells from growing and dividing 
too fast or in an uncontrolled way. Somatic mutations in 
the NF2 gene are involved in the development of several 
types of tumors, both noncancerous (benign) and   
cancerous (malignant); hence it appears twice in the 
classification rule.  

Mme encodes a common acute lymphocytic leukemia 
antigen that is an important cell surface marker in the 
diagnosis of human acute lymphocytic leukemia (ALL). 
This protein is presented on leukemic cells of pre-B 
phenotype, which represents 85% of cases of ALL. This 
protein is not restricted to  leukemic  cells,  however,  it  is  

 
 
 
 
found on a variety of normal tissues. Cyclin G is a direct 
transcriptional target of the p53 tumor suppressor gene 
product and thus functions downstream of p53. GAK is 
an association partner of cyclin G. CSRP2 is a member 
of the CSRP family of genes, encoding a group of LIM 
domain proteins, which could be involved in regulatory 
processes and be important for development and cellular 
differentiation. CRP2 contains two copies of the cysteine-
rich amino acid sequence motif (LIM) with putative zinc-
binding activity, and may be involved in regulating 
ordered cell growth. BLNK encodes a cytoplasmic linker 
or adaptor protein that plays a critical role in B cell 
development. Deficiency in this protein has also been 
shown in some cases of pre-B acute lymphoblastic 
leukemia. For gene CD19, Lymphocytes proliferate and 
differentiate in response to various concentrations of 
different antigens. The ability of the B cell to respond in a 
specific, yet sensitive manner to the various antigens is 
achieved with the use of low-affinity antigen receptors. 
This gene encodes a cell surface molecule which assem-
bles with the antigen receptor of B lymphocytes in order 
to decrease the threshold for antigen receptor-dependent 
stimulation. Furthermore, CHRNA7 is in calcium-
signalling pathway, BLNK is in B cell receptor-signalling 
pathway, and CD19 is in hematopoietic cell lineage and B 
cell receptor-signalling pathway, which correlate with 
Leukemia. It can be seen that pathway-based methods 
have their advantages and promising. 

Evidently, it is very difficult to classify the three types of 
Leukemia (Armstrong, 2004). They are acute lympho-
blastic leukemia, acute myeloid leukemia and mixed-
lineage leukemia. In this article the accuracy of Ik-TSP 
method is 100%, and it is better than any other method. 
Therefore, the improved method can be considered 
somewhat successful for the leukemia dataset. 
 
 

Conclusion 
 

In this paper, we presented the Ik-TSP to improve the 
original k-TSP algorithm. The proposed method avoids 
the shortcoming of the k-TSP method by using 
information entropy to select key genes from the dataset 
and integrating entropy with the k-TSP method. We also 
compared Ik-TSP classifiers with 5 different machine 
learning methods and the k-TSP method based on 3 
different feature selection methods on 9 binary class 
gene expression datasets and 10 multi-class gene 
expression datasets involving human cancers. Experi-
mental results showed that the Ik-TSP method had higher 
accuracy. In addition, the proposed method can effect-
tively find genes that are important for distinguishing 
different cancer and cancer subtype. 
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