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Assessment of genetic variability among the freshwater turtles is critical to the development of effective 
conservation strategies. In the present study, analysis of phenetic relationship of the genus Pangshura 
was studied using inter simple sequence repeat (ISSR) markers  to see the concordance of currently 
available morphological data with genetic data along with spatial pattern of distribution. Ten 
microsatellite-based primers amplified 156 ISSR markers among 36 individuals belonging to four turtle 
species Pangshura sylhetensis, Pangshura tecta, Pangshura simithii and Pangshura tentoria, collected 
from certain localities of Assam, West Bengal and Uttar Pradesh of India. Estimations of Nei’s genetic 
diversity (h), Shannon’s Index (I) and Total genetic diversity (Ht) reveal the existence of greater genetic 
diversity in P. tentoria and P. sylhetensis than in the other two species. However, low values of gene 
flow (Nm) and of within sample diversity (Hs) indicate prevalence of inbreeding in these species groups. 
The coefficients of differentiation (GST) values divulge that divergence started in the Pangshura 
species. Projections on the principal components analysis (PCA) plot reflect the distinct genetic 
identity of these four species. The consensus Neighbour Joining dendogram depicts P. sylhetensis, P. 
tecta, and P. tentoria as genetically closer to each other than to P. smithii.  
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INTRODUCTION  
 
The northern region of India, enriched with wide diversity 
of freshwater turtles has been designated as priority area 
of turtle conservation (Shrestha, 2001; Buhlmann et al., 
2009). The family Geoemydidae to which the genus 
Pangshura belongs comprises of many of the highly 
endangered species (Van Dijk et al., 2000; IUCN, 2011). 
Most of the Geoemydid turtles are freshwater species 
and occupy a wide range of habitats, from highly aquatic 
(Pangshura) to terrestrial (Geoemyda). The genus 
Pangshura comprises small-sized turtles, having 
maximum shell length of 20 to 26.5 cm. The species  that 
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come under this genus are Pangshura tecta, Pangshura 
sylhetensis, Pangshura tentoria and Pangshura smithii 
(Das, 2001). Further, these species are fragmented to 
sub-species like Pangshura tentoria, Pangshura tentoria 
circumdata, Pangshura tentoria flaviventer, Pangshura 
smithii and Pangshura smithii pallidipes. Recent field 
studies indicate the decline in numbers of these 
freshwater turtles in the Brahmaputra and Ganga river 
basins (Baruah, 2010; Baruah et al., 2010; Choudhury et 
al., 2000). The aim of the present study was the 
assessment of the genetic diversity based on the 
polymorphism in inter simple sequence repeat (ISSR) 
markers (Zietkiewicz et al., 1994) among the freshwater 
turtles of the genus Pangshura from northeast India, as 
information regarding morphological and genetic 
identification of the four species under this genus is lacking. 



 
 
 
 
Genetic data have been used in turtle conservation to 
evaluate the genetic variability within and among 
population (Janzen et al., 1997; Souza et al., 2002; 
Schwartz and Karl, 2005) to recognize the existence of 
cryptic taxa (Russello et al., 2005), and to reveal 
migratory patterns (Bowen and Avise, 1996). Similarly, 
microsatellites have been used to evaluate the genetic 
consequences of population bottlenecks (Kuo and 
Janzen, 2004; Waldick et al., 2002), population sizes, 
migration rates (Nichols and Freeman, 2004), natal 
dispersal (Berry et al., 2002; 2004), hybridization (Burns 
et al., 2003), diversity (Fritz et al., 2008) and also used in 
wildlife forensics (Avise, 2004). 

DNA-based markers have gained popularity in recent 
years in the assessment of genetic relationship among 
species. Of these markers, the ISSR markers 
(Zietkiewicz et al., 1994) are often used in the phenetic 
studies (Gupta et al., 1994; Wu et al., 1994; Marmi et al., 
2006; Fritz et al., 2008; Guicking et al., 2009). These 
markers being polymorphic (Bornet and Branchard, 2001) 
and ubiquitous in the genome (Tautz and Renz, 1984), 
have the advantages of Simple Sequence Repeat (SSR) 
markers, while bypassing the major obstacle to the 
development of SSR markers, that is the need to know 
the flanking sequences. Generally, the ISSRs are scored 
as dominant markers which are inherited in Mendelian 
fashion (Ratnaparkhe et al., 1998). The SSR regions 
scattered evenly throughout the genome (Condit and 
Hubbell, 1991) and yielding a large number of 
polymorphic bands, which are interpreted as band 
present or band absent (Tsumura et al., 1996). The 
absence of band signifies primer divergence or loss of a 
locus through the deletion of the SSR site or 
chromosomal rearrangement (Wolfe et al., 1998).  

Friz et al. (2005, 2008) examined the evolutionary 
relationships of five species of the genus Testudo and 
Cyclemys diversity using the data generated from the 
inter simple sequence repeat- polymerase chain reaction 
(ISSR-PCR) genomic nuclear fingerprints. Hence, the 
ISSR markers are suitable for use in species distinction 
where extensive information on DNA sequences is not 
readily available (Meloni et al., 2006). We report here the 
findings of our ISSR polymorphism-based study on the 
genetic diversity and phenetic relationship of all the four 
species and the sub-species within the Indian freshwater 
turtle genus Pangshura.  
 
 
MATERIALS AND METHODS  
 
Study area  
 
The field work and sample collection were carried out during 
January, 2008 to March, 2011 in different parts of Assam (including 
bordering areas of Bangladesh and Bhutan), West Bengal, Uttar 
Pradesh of India (Table 1, Figure 1). Almost all the target species 
and their phenotypic variations were captured and used for the 
analysis of molecular data. Taxonomy and nomenclature were 
followed after Das (1995, 2002) and Praschag et al. (2007).  
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Sample collection and DNA extraction  
 
Thirty-six (36) Pangshura samples belonging to four species as 
presented in Table 1 were sampled by clipping off a tiny piece of 
the webbing of toes. Tissues were preserved in 95% ethanol and 
stored at –20°C until DNA extraction. DNA was extracted using the 
method of Ausubel et al. (1995) with minor modifications and stored 
in TE buffer at - 20°C until use.  
 
 
Inter-simple sequence repeat-polymerase chain reaction (ISSR-
PCR) amplification  
 
Polymerase chain reactions (PCRs) were performed using ten ISSR 
primers (Table 2), after an initial screening of 19 primers. Primers 
P4 to P9 were based on turtle microsatellites reported by Aggarwal 
et al. (2004), Edwards et al. (2003) and Schwartz et al. (2003), with 
some modifications. Primers P1, P2, P3 and P10 were designed 
and used by Chen et al. (2009) in grass carp. PCRs were carried 
out in 20 μL of reaction volume containing 20 ng of genomic DNA, 
1.0 U Taq polymerase, 200 μM dNTP, 1 μM primer, and 1X 
amplification buffer (containing 2 mM MgCl2). The condition for 
amplification was an initial denaturation temperature 94°C for five 
min, followed by 35 cycles of 45 s at 94°C, then by 45 s at 
appropriate annealing temperature (Table 2) followed by 2 min at 
72°C, and then by a final extension step for 7 min at 72°C. 
Amplicons were resolved at 100 V on 1.8% agarose gels containing 
0.5 μg/ml ethidium bromide. Low range DNA ruler was used as size 
marker.  
 
 
Data analysis  
 
The molecular sizes of the amplicons were measured using the gel 
documentation software UVItec ver 12.8. Lanes representing the 
turtle samples were scored for the presence (1) or absence (0) of 
bands. POPGENE ver. 1.32 (Yeh and Boyle, 1997) was utilized to 
estimate genetic variability based on Nei’s (1973) coefficient of 
gene differentiation (GST). The software was also used to calculate 
observed alleles, effective alleles, Shannon’s information index (I), 
total genetic diversity (Ht), sample genetic diversity (Hs) and 
estimated gene flow (Nm).    

The relatedness among turtle samples was analysed based on 
the Neighbour Joining algorithm (Saitou and Nei, 1987). The matrix 
of binary characters was bootstrapped using the software Phyltools 
(Buntjer, 2001). Re-sampling was done 1000 times using 35% 
bootstrap values. Phytools was then used to generate distance 
matrices based on Nei’s coefficient (Nei and Li, 1979); S= 2a/ (a+b) 
+ (a+c), where, a= band(s) shared by individual x and y; b= bands 
amplified in individual x but not in y; c= band(s) amplified in 
individual y but not in x. Distance was estimated as 1-S. The 
Consensus Neighbour Joining Tree was prepared using the 
software Phylip ver 3.1 (Felsenstein, 2004). Geneious Pro ver 4.8 
(Drummond et al., 2010) was used to obtain a presentable 
consensus tree.  

Principal components analysis (PCA) of the original binary matrix 
was also performed sequentially by using the modules of NTSYSpc 
ver 2.20r (Rohlf, 2005): stand, simint, eigen and project. 
 
 
RESULTS  
 
Inter-simple sequence repeat (ISSR) amplification  
 
The primers generated 156 clear and distinguishable 
ISSR bands, where  sizes  ranged  from  0.2  to  2.836 kb  
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Table 1. Pangshura samples used in the present studied.  
 

Sample Taxon Place of collection GPS Location 

T52 P. sylhetensis Kushiara  River, Bhangabazar, Karimganj  
district, Assam 

24°51'39.2238''N, 92°28'55.3865''E 

    

T28 P. sylhetensis Biswanath Ghat, Assam 26° 39´31.46˝ N, 93°10´18.91˝ E 

T8 P. sylhetensis Jia Bharali River (Nameri National Park), 
Assam 

26°55’20.22”N, 92°50’27.12”E 

C10 P. sylhetensis Kuruwa Ghat , Darrang district, Assam 26°13’32.79”N,  91°46’39.74"E 

T3 P. sylhetensis Buxa Wildlife Sanctuary, West Bengal 26°50'17.05"N, 89°50'13.83"E 

T7 P. tecta Hajo, Kamrup district, Assam 26°14’41.1" N, 91°31’37.2’’ E 

C7 P. tecta Gomrighat, Sonitpur district, Assam 26°44’47.93”N,  93°38’45.45”E 
    

C4 P. tecta Kushiara  River, Karimganj  district, India- 
Bangladesh border 

24°52'37.53.41''N, 92°31'5.16.25''E 

    

T2 P. smithii  Brahmaputra, Bhurhachapari Wildlife 
Sanctuary 

26°33’12.7”N,  92°21’32.6"E 

    

T50 P. smithii  Deeporbeel, Kamrup district, Assam 26°07'02"N   91°38'40"E 

T1 P. smithii  Tengatoli char, Morigaon, Assam 26° 29' 016"  N, 92° 20' 41.5" E 

C12 P. smithii  Biswanath Ghat, Sonitpur district, Assam 26°46’30.74”N, 93°32’04.86”E 

C15 P. smithii pallidipes Ganga river, Farrukhabad, Uttar Pradesh 27° 12' 50.8" N, 79° 41' 34.6" E 

T16 P. tentoria circumdata Yamuna river, Etawah, Uttar Pradesh 26°45'13.44.53''N,79°0'28.20.74''E 

T15 P. tentoria circumdata Yamuna river, Uttar Pradesh 26°44'37.5749''N, 79°0'3.488''E 

T12 P. tentoria circumdata Ganga river, Farrukhabad, Uttar Pradesh 27° 14' 17.7" N, 79° 40' 27.1"E 

T13 P. tentoria circumdata Ganga river, Farrukhabad, Uttar Pradesh 27° 13' 20.4" N,79° 42' 51.2"E 

T27 P. tentoria flaviventer Lahorighat, Morigaon district,  Assam 26° 27' 00.1"  N, 92° 15' 22.2" E 

T49 P. tentoria  Hajo, Kamrup, Assam 26 º 14’41.1’’N, 91 º 31’37.2’’E 
    

T26 P. tentoria  Dimbur Char, Lahorighat, Morigaon district, 
Assam 

26° 26' 31.5" N, 92° 16' 08.3" E 

 
 
 

(Table 2). The number of bands per primer ranged from 9 
to 24 with a mean of 15.6 bands per primer. Primers 1, 4, 
6 and 9 amplified monomorphic markers (Table 2). 
Primer 3 revealed three markers of 0.615, 0.666 and 
0.722 kb sizes and Primer 5 revealed two markers of 
0.52 and 0.592 kb sizes that were common to both the P. 
smithii subspecies (Figure 2). Primer 5 also amplified two 
markers of 0.541 and 0.949 kb sizes that were present in 
all the three P. tentoria subspecies.  

The highest number of bands was generated from the 
primer P10. The highest percentage of polymorphism 
(100%) was generated from the primers P2, P3 and P5 
(Table 2). The number of polymorphic bands produced 
per primer ranged between 6 (P9) to 23 (P10). Out of the 
145 polymorphic bands, P. sylhetensis had 22 (highest) 
numbers of unique polymorphic bands followed by 20 in 
P. tentoria, 18 in P. tentoria circumdata, 15 each in P. 
smithii and P. tentoria flaviventer, 11 in P. tecta and 7 in 
P. smithii pallidipes (Table 3). The ISSR banding patterns 
were amplified by seven primers (Figure 2).  

The band profiles generated by ISSR primers showed 
polymorphism among the Pangshura samples. The 
extent of polymorphism varied. The percentage 

polymorphic loci were calculated to be 38.59, 24.46, 
27.72 and 47.83 for P. sylhetensis, P. tecta, P. smithii 
and P. tentoria respectively. 
 
 

Genetic variability revealed through inter-simple 
sequence repeat (ISSR) markers  
 

A summary of genetic variation statistics for all loci are 
presented in Table 4. Average numbers of alleles 
observed in P. sylhetensis, P. tecta, P. smithii and P. 
tentoria were 1.34 ± 0.49, 1.24±0.43, 1.26 ± 0.45 and 
1.48 ± 0.5 respectively, while it was 2.0 ± 0.0 when all 
four Pangshura species were taken together (Table 5). 
The genetic diversity in the four Pangshura species is 
presented in Tables 5 and 6.  
 
 

Phenetic relationship among the test species 
 

Genetic similarity and distance values based on Nei’s 
original (Nei, 1972) and unbiased (Nei, 1978) measures 
are presented in Table 6. In the present study, each 
species of Pangshura is considered as a single 
population  and  the  genetic  distances  among  the   four  
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Figure 1. Map showing the location of sample collection sites in Assam (Including Assam-Bangladesh Border, Assam-Bhutan 
Border and part of West Bengal) and Uttar Pradesh. 
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Table 2. ISSR amplicons. 
 

Primer Primer sequence (5
/
–3

/
) Tm (°C) Total bands Polymorphism % Amplicon  size range (kb) 

P1  5'(GA)8YT 3' 48 19 94.74 0.2 – 1.693 

P2  5'(GATA)2(GACA)23' 46 22 100 0.4 – 2.836 

P3  5'(ATG)6 3' 52 16 100 0.3 – 1.279 

P4 5'(TC)8YG3' 52 21 95.24 0.255 – 01.182 

P5 5' (TC)8HT 3' 50 15 100 0.508 – 1.152 

P6 5' (TC)8BG 3' 52 11 90.91 0.353 – 1.15 

P7 5' (TG)8RT 3' 50 9 100 0.409 – 1.083 

P8 5' YG(GT)8 3' 52 10 100 0.574 – 0.991 

P9 5' HR((TG)8 3' 50 9 77.78 0.611 – 1.091 

P10 5'(AG)8YT 3' 47 24 100 0.227 – 1.231 

Pooled values 156 100  
 

H= non – G; V= non – T; B= non – A; Y= pyrimidine; R= purine. 
 
 
 

 
 

Pangshura species ranged from 0.14 to 0.23. The 
shortest distance (0.14) existed between P. smithii and P. 
tentoria. The longest genetic distance (0.23) existed 
between P. smithii and P. tecta. The genetic identity 
value ranged from 0.79 to 0.87 (Table 7).  

The Neighbor-Joining (NJ) consensus tree is depicted 
in Figure 3. The species were grouped into three clusters. 
Cluster I comprised of P. tecta and P. sylhetensis. 
Topology of the cluster indicates that genetic diversity 
exists between the two species.  

Both the species formed two distinct sub-clusters with 
81 and 100% bootstrap support for P. tecta and P. 
sylhetensis respectively. Diversity existed among the P. 
sylhetensis samples. P. sylhetensis from Bishwanathgath 
(T28) and Jia Bharali (T8) from the state of Assam were 
clustered together with 83% bootstrap support. The P. 
sylhetensis samples from Kuruwaghat (C10) of northern 
Assam and Kushiara River (T 52) bordering Bangladesh 
were in the same cluster. However, P. sylhetensis of 
Buxa Wildlife Sanctuary (T3) of West Bengal formed a 
distinct clade within the P. sylhetensis group with 81%, 
bootstrap separation. In the P. tecta sub-cluster of Hajo 
(T7) and Gomerighat (C7), samples were grouped 
together with 100% bootstrap support, while the Kushiara 
river sample (C4) formed a monophyletic branch at 100% 
bootstrap separation. 

All the three currently recognized subspecies of P. 
tentoria were clubbed in the clusters II with bootstrap 
separation 64%. P. tentoria sample collected from Hajo 
(T49) was on a monophyletic branch of the clade. P. 
tentoria (T 26) and P. tentoria flaviventer (T27) samples 
from Lahorighat were clustered together with 78% 
bootstrap support. Samples of P. tentoria circumdata 
collected from the Ganga (T12, T13) and Yamuna rivers 
(T15, T16) at different sites of Uttar Pradesh (Table 1) 
reflected their geographical distance from the Pangshura 
samples of Assam. One of the P. tentoria circumdata 
samples (T13) collected from the Ganga River at 

Farrukhabad, Uttar Pradesh was on a monophyletic 
branch (Figure 3).  

Two subspecies of P. smithii were clustered together in 
cluster III. The P. smithii samples from Depor beel (T50) 
and Tengatoli (T1) were closer than the other samples. 
The P. smithii samples collected from Burachapari (T2) 
and Biswanathghat (C12) formed monophyletic branches. 
On the other hand, the samples of P. smithii pallidipes 
from Farrukhabad, Uttar Pradesh also formed 
monophyletic branch with 53% bootstrap separation.  

The genetic interrelationships among Pangshura 
samples were projected on the PCA plot (Figure 4) and 
those depicted by the consensus NJ tree were similar; 
but were better represented on the plot. The subspecies 
of P. tentoria and that of P. simithii were well-separated 
by the first and the second principal components, 
however, their phenetic relationship with the subspecies 
of P. tecta, and P. sylhetensis was less defined. The 
subspecies of P. tecta and those of P. sylhetensis are 
projected as being closer to one another than they are 
either to the subspecies of P. tentoria or P. smithii.  
 
 
DISCUSSION  

 
Amplification of a large number of polymorphic ISSR 
bands (77.78 to 100%) indicates the existence of genetic 
diversity in the four Pangshura species. The average 
values of the observed and effective alleles, percentage 
polymorphic loci, Nei’s gene diversity (h), Shannon’s 
information index (I), total genetic diversity (Ht) (Table 5) 
all reveal that the highest polymorphism is present in P. 
tentoria followed by P. sylhetensis.  

The high GST values and very low Nm values  (Table 5) 
for all species indicate that they  are in a high state of 
differentiation; GST  > 0.25 and Nm < 1.0 are threshold 
values beyond which significant population differentiation 
occurs (Kar et al., 2005). The  PCA  plot  (Figure  4)  also  
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Figure 2. ISSR amplification profiles using primers P1, P4, P5 and P10, respectively. 
Pangshura samples with respective sample code are in lanes 1–20; M, 100 bp DNA marker 
(range 0.1 to 5 kb).   

 
 
 

indicates the genetic distinctness of the four species. 
Differentiation might have occurred probably only due to 
genetic divergence through the evolutionary courses. The 
Neighbour Joining dendogram (Figure 3) presents the 
genetic interrelatedness of the Pangshura samples. The 
100% bootstrap separation of P. smithii samples (cluster 

III) implies this species is more distant from the other two 
species. The GST values presented in Table 5 supports 
this result. Nei’s measures of genetic identity and genetic 
distance (Table 7) are also in broad agreement of 
phenetic relationship that the NJ tree presents.  

Of the primers, P1, P2, P3 and P10  were  used  earlier  
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Table 3. Pangshura species- specific unique ISSR bands.  
 

Species Number of unique bands Unique Band size (kb) Primer name 

P. tecta 6 
0.508 , 0.575 P5 

0.227, 0.663,0.779, 1.046 P10 

    

P. sylhetensis 10 

0.65 P1 

0.3, 0.565 P3 

0.566, 0.818, 0.975 P5 

0.348, 0.419,0.688, 1.231 P10 

    

P. smithii  5 
0.615, 0.666, 0.722 P3 

0.52, 0.592 P5 

    

P.tentoria  2 0.541, 0.949 P5 

 
 
 

Table 4. Observed and effective number of alleles in the four Pangshura species for all primers. 
 

Primer 
Alleles in P. sylhetensis  Alleles in P. tecta  Alleles in P. smithii  Alleles in P. tentoria 

Observed Effective  Observed Effective  Observed Effective  Observed Effective 

P1 1.35 ± 0.5 1.21 ± 0.4  1.17 ± 0.4 1.1 ± 0.2  1.17 ± 0.4 1.1 ± 0.2  1.43 ± 0.5 1.22 ± 0.3 

P2 1.3 ± 0.5 1.13 ± 0.3  1.28 ± 0.45 1.1 ± 0.2  1.28 ± 0.45 1.1 ± 0.24  1.48 ± 0.5 1.13 ± 0.2 

P3 1.3 ± 0.48 1.17 ± 0.32  1.1 ± 0.23 1.0 ± 0.04  1.16 ± 0.37 1.09 ± 0.25 1.47 ± 0.5 1.25 ± 0.3 

P4 1.1 ± 0.32 1.04 ± 0.15  1.03 ± 0.19 1.0 ± 0.03  1.24 ± 0.44 1.09 ± 0.21 1.48 ± 0.51 1.17 ± 0.21 

P5 1.5 ± 0.51 1.31 ± 0.39  1.5 ± 0.51 1.26 ± 0.3  1.7 ± 0.38 1.1 ± 0.28  1.33 ± 0.48 1.2 ± 0.18 

P6 1.11 ± 0.33 1.06 ± 0.24  1.11± 0.33 1.08 ± 0.25  1.18 ± 0.39 1.08 ± 0.18 1.18 ± 0.39 1.05 ± 0.13 

P7 1.33 ± 0.49 1.23 ± 0.36  1.08 ± 0.29 1.04 ± 0.12  1.42 ± 0.51 1.29 ± 0.4  1.67 ± 0.49 1.28 ± 0.32 

P8 1.78 ± 0.44 1.38 ± 0.37  1.56 ± 0.53 1.35 ± 0.39  1.55 ± 0.53 1.38 ± 0.46 1.78 ± 0.44 1.31 ± 0.26 

P9 1.98 ± 0.3 1.47 ± 0.31  1.36 ± 0.5 1.29 ± 0.44  1.64 ± 0.5 1.41 ± 0.44 1.64 ± 0.5 1.49 ± 0.48 

P10 1.82 ± 0.4 1.44 ± 0.37  1.64 ± 0.5 1.35 ± 0.36  1.45 ± 0.52 1.25 ± 0.37 1.74 ± 0.47 1.43 ± 0.42 

 
 
 

Table 5.  Genetic parameters for the four species of genus Pangshura. 
 

Genetic parameter P. sylhetensis  P. tecta  P. smithii  P. tentoria  Overall 

Percentage polymorphic loci  38.59  24.46  27.72  47.83  100 

Number of observed alleles: na 1.34 ± 0.49  1.24  ± 0.43  1.26  ± 0.45  1.48  ± 0.5  2.0  ± 0.0 

Number of effective alleles: ne 1.2 ± 0.33  1.13  ± 0.26  1.15  ± 0.29  1.22  ± 0.31  1.34  ± 0.3 

Nei's genetic diversity: h 0.12  ± 0.12  0.08  ± 0.15  0.09  ± 0.16  0.14  ± 0.17  0.22  ± 0.16 

Shannon's information index: I 0.19  ± 0.26  0.12  ± 0.22  0.13  ± 0.24  0.22  ± 0.25  0.36  ± 0.21 

Total genetic diversity (Ht) 0.13  ± 0.03  0.1±0.03  0.09 ± 0.03  0.16 ± 0.04  0.22  ± 0.03 

Sample genetic diversity (Hs)  0.01  ± 0.01  0.01±0.01  0.004 ± 0.04  0.03 ± 0.03  0.11 ± 0.01 

Estimated gene flow (Nm) 0.04  0.05  0.02  0.09  0.46 

Gene differentiation (GST) 0.93  0.91  0.96  0.84  0.52 
 
 
 

in grass carp (Chen et al., 2009); P10 showed better 
cross-species amplification than the others. The Nei’s F-
statistics and Shannon’s information index values 

obtained due to P10 were comparable to the values 
obtained due to the primers P4, P5, P6, P7, P8 and P9 
(Table 6) that were designed and slightly modified  by  us  
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Table 6. Nei’s F-statistics and Shannon's information index in Pangshura species for all ISSR primers. 
  

Primer 
Overall gene 
diversity (Ht) 

Within sample 

gene diversity (Hs) 

Gene 
differentiation (GST) 

Gene diversity 
(h) 

Shannon's 
information index (I) 

P1 0.16 0.09 0.42 0.12 0.18 

P2 0.15 0.08 0.46 0.15 0.27 

P3 0.24 0.08 0.66 0.16 0.25 

P4 0.19 0.05 0.74 0.19 0.31 

P5 0.22 0.13 0.42 0.22 0.35 

P6 0.29 0.04 0.85 0.28 0.44 

P7 0.24 0.13 0.48 0.24 0.39 

P8 0.36 0.21 0.39 0.34 0.52 

P9 0.32 0.23 0.27 0.31 0.48 

P10 0.29 0.22 0.24 0.28 0.43 
 

 
 

Table 7. Nei's original (1972) and unbiased (1978) measures of genetic identity and genetic distance among the four 
Pangshura species. 
 

Pangshura species P. sylhetensis P.tecta P. smithii P. tentoria 

P. sylhetensis - 0.79 (0.8) 0.82 (0.83) 0.84 (0.85) 

P.tecta 0.23 (0.22) - 0.79 (0.79) 0.84 (0.84) 

P. smithii 0.19 (0.19) 0.23 (0.23) - 0.87 (0.88) 

P. tentoria 0.17 (0.17) 0.18 (0.17) 0.14 (0.13) - 
 

Genetic identity (above diagonal) and genetic distance (below diagonal); figures in parentheses indicate the unbiased measures 
values. 

 
 
 

based on earlier reports on turtle microsatellites by 
Aggarwal et al. (2004), Edwards et al. (2003) and 
Schwartz et al. (2003). 

The PCA result reveals that a close relation within the 
respective P. tentoria could not be expected. From the P. 
sylhetensis group, samples from West Bengal and 
Kushiara River bordering to Bangladesh are placed near 
to the P. tecta group, representing a close genetic 
relationship between the two species (Figure 4). The 
analysis of species specific unique ISSR amplicons of the 
present study (Table 2) along with the genetic 
parameters  (Table 5),  the  correlation  of  PCA  plot  and 
neighbour joining tree reveal that the genetic diversity 
among the Pangshura could be well inferred. 

Praschag et al. (2007) sampled P. sylhetensis and P. 
tentoria from Assam (Northeast India) to construct 
phylogeny of endangered Southeast Asian turtles 
including Pangshura. However, their study was based on 
patchy taxon sampling and could not establish any 
distinctness between the subspecies of P. smithii and P. 
tentoria with the help of cyt b gene dataset. The present 
study has established that in order to establish the 
variation in the genome of Pangshura species, ISSR 
appear as powerful tool. These variations support the 

validity of the morphologically weakly defined subspecies 
P. tentoria and P. tentoria circumdata as well as P. smithii 
and P. smithii pallidipes. Although few cross-species 
microsatellites could be used for genetic diversity of 
Pangshura, the availability of species-specific markers is 
highly desirable for population structure assessments. 
These microsatellites thus provide efficient genetic 
markers to understand the population structure, 
phylogeography and species relationships of Pangshura 
and other freshwater turtle species. 
 
 

Conclusion  

 
Our study reveals the existence of a narrow genetic base 
for all the four turtle species, which we attribute to 
inbreeding. It is necessary to formulate conservation 
strategies in terms of protection of the habitat sites to 
minimize the reduction of gene pool, which might be the 
probable cause of inbreeding. 

In-situ egg hatching of eggs followed by headstarting of 
those species can also be undertaken as a part of 
conservation strategy. Future work should focus on finer 
scale genetic analyses in order to gain  a  better  baseline 



 

246        Afr. J. Biotechnol. 
 
 
 

 
 

Figure 3. Neighbor-Joining Consensus Tree generated after bootstrap analysis of ISSR data. 
Bootstrap support values, in percentages, based on 1000 replications are presented. 
Clusters are indicated in roman numerals. [T28 (P. sylhetensis, Biswanathghat); T8 (P. 
sylhetensis, Jia Bharali river); C10 (P. sylhetensis, Kuruwa Ghat); T52 (P. sylhetensis, 
Kushiara river); T3 (P. sylhetensis, Bauxa WLS, West Bengal); C7 (P. tecta, Gomerighat; T7 
(P. tecta, Hajo); C4 (P. tecta, Kushiara river); T26 (P. tentoria Lahorighat);  T27 (P. tentoria 
flaviventer, Lahorighat); T49 (P. tentoria, Hajo); T13 (P. tentoria circumdata, Ganga river); 
T12 (P. tentoria circumdata, Ganga river); T15 (P. tentoria circumdata,Yamuna river); T16 (P. 
tentoria circumdata,Yamuna river); T1 (P. smithii, Morigaon); T50 (P. smithii, Deeporbeel); T2 
(P. smithii, Burhachapari WLS); C15 (P. smithii pallidipes, Ganga river); C12 (P. smithii, 
Biswanathghat); ’a’ and ‘b’ represents sample replicates of respective species from the same 
locality.] 

 
 
 

understanding of population genetic structure of 
Pangshura. 
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