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sucking insects (white flies) for which there is no alter-
native available in the present biocontrol agents. Among 
them, Isaria fumosorosea (=Paecilomyces fumosoroseus) 
strains occur in soils and insects world-wide. Their 
efficacy against Bemisia argentifolii and Trialeurodes 
vaporariorum has been described by Wraight et al. 
(1998) and Fang et al. (1985). Nevertheless, different 
strains of the same species do not have equal potentials 
for the control of the same arthropod species (Altre et al., 
1999; Vey et al., 1982).  

Pathogenicity of an antagonist towards an insect 
species is related to the ability of the fungus to germinate 
on the insects' cuticle and to penetrate it, to its production 
of secondary metabolites and to the defense mecha-
nisms of the host to prevent fungal infection and growth 
(Kaijiang and Roberts, 1986; Rath et al., 1996; Clarkson 
et al., 1998; St. Leger et al., 1989). The synthesis of 
extracellular enzymes is crucial for the infection process 
of this fungus. Successful infection primarily relies on the 
synthesis of molecular scissors such as extracellular 
proteases, chitinases and esterases (Clarkson and 
Charnley, 1996). The insect infection relies on 
protease(s) action because 75% of the cuticle is made up 
of proteins. Furthermore, chitinase(s) help degradation of 
N-acetyl-D-glucosamine moieties present in the cuticle 
(Charnley, 1997).  

Due to the significance of proteases in breaching the 
insect cuticle, they have received more attention from 
researcher’s worldwide. During more than three decades 
of research on Entomo-Pathogenic Fungi (EPF), several 
investigators have established two proteases, namely 
subtilisins and trypsins, as important virulence factors (St. 
Leger et al., 1986, 1988). Although the overall fold of 
various serine proteases may differ, they all follow the 
same mechanism of action through an identical stereo-
chemistry of the catalytic triad and oxyanion hole. In this 
mechanism, the serine functions as the primary nucleo-
phile and the histidine plays a dual role as the proton 
donor and acceptor at different steps in the reaction. The 
role of asparagine is believed to bring the histidine into 
the correct orientation to facilitate the nucleophilic attack 
by the serine. The role of the oxyanion hole is to stabilize 
the developing negative charge on the oxygen atom of 
the substrate during the formation of the tetrahedral 
intermediate (Russell and Fersht, 1987; Dodson and 
Wlodawer, 1998; Birktoft and Blow, 1972). 

In order to increase their utilization, research needs to 
concentrate on: (a) pathogen virulence and speed of kill, 
(b) pathogen performance under challenging environmental 
conditions (cool weather, dry conditions etc.), (c) efficien-
cy in the production process, (d) formulations that enable 
ease of application, increased environmental persistence 
and longer shelf-life, (e) integration into managed ecosys-
tems and interaction with the environment and other 
integrated pest management (IPM) components (Lacey 
et al., 2001). The three proteases PR1 (Metarhizium 
anisopliae), VCP1 (Verticillium chladosporium) and Ver112 
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(Verticillium licanii) have shown that they have a high 
degree of sequence similarity with each other and belong 
to the proteinase K family of subtilisin-like serine 
proteases (subtilases) which is a large family of 
endopeptidases found only in fungi and Gram-negative 
bacteria (Siezen and Leunissen, 1997). These enzymes 
show conservation of the Asp- His-Ser catalytic triad and 
catalytic domain.  

However, the three-dimensional (3D) structures have 
not been resolved for any of the cuticle-degrading 
proteases so far by either X-ray crystallography or 
nuclear magnetic resonance (NMR) techniques. The 
lacuna of cuticle degrading protease, in the present study 
reveals that the enzymatic catalytic domain is analyzed 
through IR and NMR, which provide concrete idea of a 
particular domain involved in cuticle degradation. 
 
 
MATERIALS AND METHODS 
 
Preparation of the test insects and bioassay 
 
The test lepidopteran insect Papilio demoleus (L.) (Papilionidae: 
Lepidoptera) was maintained on citrus fresh leaves at 27±2�C, 70± 
5% relative humidity (RH) and 14 h photoperiod under laboratory 
conditions. Citrus leaves were washed with diluted potassium 
permanganate solution (0.001%) followed by distilled water to 
prevent microbial contamination.  

Leaves were kept in shade at room temperature until the distilled 
water evaporates. All the glassware used in the experiments were 
washed thoroughly in detergent, treated with 2% formalin and then 
dried in an oven at 70�C for 4 h to check microbial contaminations. 
The 2nd instar larvae of P. demoleus was collected from citrus field 
near Madurai, Tamil Nadu, India and brought into the laboratory, 
reared in a wooden cage (60 X 60 cm) providing adequate citrus 
leaves as a stock culture. The 3rd instar larvae were from stock in 
this study. 
 
 
Isolation protocol of I. fumosorosea  
 
Isolation protocol of Ifr isolates followed the method of Haraprasad 
et al. (2001). Ifr was isolated from the soil in different locations of 
Madurai and Theni district, Tamil Nadu. One gram of soil was 
diluted with 100 ml of distilled water and was serially diluted. From 
each dilution, 100 µl was placed on PDA medium and it was 
fortified with streptomycin (10 mg/100 ml).  It was allowed to grow 
for 7 days at 27±2°C (Haraprasad et al., 2001) in the respective 
media. After 7 days of incubation the fungal colony was identified. 
The identified fungal colony was sub-cultured in Saboraud Dextrose 
Agar (SDA) (Hi-Media). The sterilized medium was transferred into 
sterile Petri dishes (Borosil®) and test tubes (Borosil®) that were 
then inoculated with conidia by streaking. The isolated fungus Ifr 
was used for the pathogenicity and enzyme studies against P. 
demoleus.  
 
 
Efficiency of I. fumosorosea towards P.  demoleus 
 
The isolates of I. fumosorosea were used to determine the 
pathogenicity of P. demoleus. Pure culture of the test fungal 
species, I. fumosorosea isolates was grown on SDA at 27±2°C until 
a dense sporulating mat was produced (14 days). The conidial 
suspension of 108 conidia per milliliter was prepared by counting the  
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Table 1. Cumulative mortality (%) of the third instar larvae of Papilio 
demoleus inoculated with various conidia concentrations of the Irf1 
isolate of Isaria fumosorosea . 
  

Conidial 
concentration 
(conidia ml-1) 

Period  (days) after treatment 

2 4 6 8 

1×105 
0.00 

(1.16)cd 
5.56 

(13.63)d 
5.56 

(13.63)d 
11.11 

(19.47)d 

1×106 
5.56 

(13.63bd 
5.56 

(13.63)cd 
11.11 

(19.47)cd 
11.11 

(19.47)cd 

1×107 
5.56 

(13.63)bd 
33.33 

(35.26)b 
50.50 

(45.00)b 
55.56 

(48.19)b 

1×108 
27.78 

(31.80)a 
38.89 

(38.58)a 
55.36 

(48.19)a 
72.23 

(58.20)a 

Control 
0.00 

(2.86)c 
0.33 

(3.29)c 
0.67 

(4.69)e 
4.67 

(12.48)d 
 

Each value is mean of three replicates. Values in parenthesis are arc 
sine transformed values; a - d represents the levels of treatments: ‘a’ = 
best treatment and ‘d’= pooor treatment. 
 
 
 
spores in improved Neubauer counting chamber (Superior 
Marienfeld, Germany). The conidial suspension per milliliter (105 - 

108 conidia per ml) was prepared for the experimental studies.  
Bioassays with different Ifr fungal isolates were carried out by 

dipping 15 third instar larvae of P. demoleus in conidial suspen-
sions plus 0.02% Tween 20 at each concentration for 30 s. After 30 
s, the larvae was transferred to sterile filter paper and then placed 
in individual sterilized containers having single citrus leaf previously 
surface sterilized and was cleaned with sterilized paper towels to 
eliminate excess water. The bioassay setup was conducted in room 
at 27±2 °C at 70±5% RH. Each bioassay per concentration was 
performed in triplicates. A group of larvae (10 in each replicate) was 
maintained as control treatment; only distilled water plus 0.02% 
Tween 20. The larvae of P. demoleus were observed 2, 4, 6 and 8 

days after inoculation with each conidial suspension. The dead 
larvae were placed in a controlled growth chamber to stimulate the 
development of fungal mycelia and confirm that the death was by 
infection of the Ifr isolates. 
 
 
Fungal hydrolytic enzymes quantification and separation 
 
The fungal hydrolytic enzyme activities such as α-amylase, 
proteolytic and  chitinolytic activites were determined using Bernfeld 
(1956), St. Leger et al. (1987) and Ulhoa and Peberdy (1992) 
methods accordingly.  
 
 
Prediction of catalytic triad of cuticle degrading protease  
 
Ammonium sulphate precipitated culture supernatants were centri-
fuged at 5000 rpm for 10 min using refrigerated centrifuge. The 
precipitate was dissolved in the solvent (Butanol: Glacial acetic 
acid: Water in the ratio of 4:1:5) and then amino acid separations 
was carried out using Thin Layer Chromatography (TLC). The 
collected colored fractions were then used for the analysis in the 
Fourier Transform Infra-Red (FTIR, NEXUS-672 model) and the 
spectrum was taken in the mid Infra-Red (IR) region of 400-4000 
cm1. Nuclear Magnetic Resonance (NMR, Bruker (300 MHz) 
spectroscopy was also used to to predict the catalytic triad amino 
acids (asparagine, histidine and serine) of cuticle degrading protease 

 
 
 
 
of I.  fumosorosea secretome. The samples were dissolved by 
using deuterated chloroform (CDCL3) as solvent.  
 
 
Statistical analysis 
 
Analysis of variance and Duncan’s multiple range test (DMRT) was 
performed to determine the best treatment using SPSS 10 and 
AGRESS softwares. 
 
 
RESULTS 
 
The efficacy of I.  fumosorosea on P. demoleus 
 
The present study reveals the efficiency of  I. 
fumosorosea isolates against P. demoleus at various 
spore concentration of 105 to 108 at different days (2nd, 
4th, 6th and 8th days) of post treatment (Tables 1 and 2). It 
was observed that, 72.23% (75%) mortality was found in 
Ifr1 (Azhagar kovil) isolate on 8 days at 108 spore/ml 
whereas only 61.90% mortality was verified by Ifr2 isolate. 
The control treatment unveiled the least mortality of P. 
demoleus by the tested isolates. The mortality due to Ifr2 
isolate at the initial spore concentration (105) was at the 
average of 4.76% only. The mean mortality of the Ifr2 
isolate ranged from 3.57 to 36.90%. Furthermore, by the 
6 days at 108 concentrations only the Ifr1 isolate promoted 
50% mortality towards P. demoleus.  

Enzymatic role of I. fumosorosea in the pathogenesis of 
P. demoleus was analysed quantitatively by different 
hydrolytic enzyme assays such as α-amylase activity, 
proteolytic activity and chitinolytic activity and are 
represented in Figures 1 and 2. Supernatant obtained 
from minimal medium in the presence and absence of P. 
demoleus exoskeleton were double filtered after 3 days 
of incubation and comparatively higher protein secretion 
was found in the Minimal Medium + Cuticle (MMC) by the 
Ifr1 than MM and Ifr2. This may also have helped the Ifr1 
isolate to contribute higher percent mortality than Ifr2. 
 
 
Structural elucidation of catalytic triad 
 
Prediction of catalytic triad conserved amino acids of 
cuticle degrading protease such as serine, histidine and 
asparagine in the fungal secretome was carried out using 
FTIR and 1H NMR with their basic structures (Figures 3 
and 4).  
 
 

DISCUSSION  
 
Naturally occurring entomopathogens play an important 
role in our ecosystem. Invertebrates, viruses, bacteria 
and fungi can be found as regulatory factors in insect 
populations. Hence, many species are used as biological 
control agents of insect pests in row and glasshouse 
crops, orchards, turf, stored products and forestry and for 
abatement of vector insects of veterinary and medical
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range 11-14 ppm confirmed the presence of OH group 
which was the main side chain of the amino acids serine 
besides, peak at 7.571 ppm (CH), 7.226, 7.222 and 6.873 
ppm (CH), 4.893 and 3.640 ppm (CH), 3.619 and 3.597 
ppm (CH2), 2.138 and 2.061 ppm (NH2), represents the 
asparagine and its 2- Pyrrole imidazole ring (7.571 ppm 
(CH) and 6.873ppm (CH). The peak at the 550, 1.364, 
1.338, 1.215, 0.926, 0.902 and 0.878 ppm has the 
histidine counterparts. Thus, the above information 
clearly confirm the presence of catalytic triad amino acids 
in the secreted proteome of I .fumosorosea towards P. 
demoleus exoskeleton. 
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