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This research was conducted with the objective of observing alterations in reducing sugars, which may 
play a part in distinguishing tolerant and susceptible genotypes. The experimental material consisted of 
thirteen wheat genotypes including eleven bread wheat advanced lines, one synthetic hexaploid and its 
durum parent. Seeds were sown in plastic pots and allowed to grow under normal irrigation for 32 days. 
Stress was imposed by withholding water for a period of 12 days. Subsequently, shoots were collected 
from stressed and non stressed young plants and the total reducing sugars were estimated. The 
agronomic performance of those advanced lines that were stable, such as CIM-47, CIM-51, NR-234, NR-
241 and NR-264, had more elevation in reducing sugars as compared to others. This study therefore 
showed that stress tolerant varieties accumulated more glucose than sensitive ones. On the contrary, 
CIM-48 and NR-175 showed inhibition of sugars; and from their agronomic performance, they were also 
unstable with respect to yield and yield components. It was concluded that tolerant genotypes depict an 
elevated reducing sugar, and hence they could be useful in selecting tolerant varieties against water 
stress. 
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INTRODUCTION 
 
Wheat (Triticum aestivum), one of the important staple 
food crops, is grown under a broad range of environ-
mental conditions in terms of water regimes, climatic 
factors, and soil types (De-Long et al., 2007). Water 
stress affects many physiological and biochemical 
processes in plants (Acevedo et al., 1979; Hanson and 
Hitz, 1982), thereby resulting in the alteration of some 
metabolic pathways. Among the major effects are those 
involving carbohydrate metabolisms, with the accu-
mulation of sugars and a number of other organic solutes 
(Iljin, 1957; Kameli, 1990). Carbohydrate changes are of 
particular importance on account of their direct relation-
ships with physiological processes such as photo-
synthesis, translocation and respiration (Blum et al., 
1991; Kiniry, 1993; Schnyder, 1993). Accumulation of 
sugars in different parts of plants is enhanced in 
response to the variety of environmental stresses (Prado 
et al., 2000). Water  soluble  carbohydrates  of  leaves  or 
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stems (culm and leaf sheath) are considered as important 
physiological trait indicative of drought tolerance because 
of dual functions; they do not only act in osmotic 
regulation as the osmolyte under adverse environmental 
conditions, but also contribute to grain growth and 
development as the dominant carbon source for grain 
yield when active photosynthesis is inhibited by drought 
stress during grain filling (Blum, 1996; Setter et al., 1998; 
Diab et al., 2004; Ehdaie et al., 2006; Van Herwaarden et 
al., 2006).  

It has been demonstrated that certain sugars may be 
central to the protection of a wide range of organisms 
against drought (Ingram and Bartels, 1996). The involve-
ment of soluble sugars in desiccation tolerance in plants 
was suggested by studies in which the presence of 
particular soluble sugars can be correlated with the 
acquisition of desiccation tolerance (Leprince et al., 
1993). Although, sugar accumulation is not the only way 
in which plant deal with desiccation (Bohnert et al., 1995), 
it is considered as an important factor in tolerance and 
soluble sugar content prove to be a better marker for 
selecting improvement of drought tolerance  in  wheat  (Al  
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Table 1. Mean squares for reducing sugars (µg sugars/g fwt) in bread wheat 
advanced lines genotypes under irrigated and non-irrigated condition. 
 

Sources of variation  d.f Reducing sugar 

Treatments (T) 1 1498600.538** 

Genotypes (G) 12 1652943.918** 

 G × T 10 1424610.583** 

 Error  24 937.338 
 

**Significant at 1% level of probability. 
 
 

 

Hakimi et al., 1995; Mohammadkhani and Heidari, 2008). 
Recent studies also demonstrate that the remobilization 
of pre-anthesis-stored carbohydrate reserves in wheat 
stem before flowering is promoted by water deficit, which 
during grain filling can enhance plant senescence, 
accelerate grain filling and improve yield in cases where 
senescence is unfavorably delayed by heavy use of 
nitrogen (Yang et al., 2000, 2001).  

A central role of sugars depend not only on direct 
involvement in the synthesis of other compounds, 
production of energy but also on stabilization of mem-
branes (Hoekstra et al., 2001), action as regulators of 
gene expression (Koch, 1996) and signal molecules 
(Sheen et al., 1999; Smeekens, 2000). The aim of the 
current research was to find out the changes in the 
reducing sugars which may play a part in distinguishing 
tolerant and susceptible genotypes under water stress 
condition.  
 
 

MATERIALS AND METHODS 
 

The experiment was conducted in a randomized complete block 
design with two replications using plastic pots and filled with sandy 
loam soil and manure. Five wheat seeds were sown in each plastic 
pot. There were thirteen wheat genotypes, two irrigation levels and 
two replications of each. A total of 52 pots were used in this 
experiment. Stress was started from 32 days after sowing, and after 
the 12

th
 day of stress, shoots were harvested. Samples were 

weighed, washed and kept in sealed plastic bags with tags in the 
refrigerator for the estimation of reducing sugars.  

For quantitative estimation of soluble carbohydrates (free from 
combined hexoses), 4 ml buffer solution in per gram fresh weight of 
shoot material were plunged in hot 80% ethanol (kept over boiling 
water bath) for 5 min and then crushed into pestle and mortar. The 
slurry thus obtained was filtered and the residue was re-extracted 
two or three times and the supernatant were made up to 2 ml with 
distilled water. Carbohydrates were measured by Nelson’s 
modification of Somogi’s method (Somogi, 1937; Nelson, 1944). 

This is a very sensitive and reasonably quick method for quan-
titative estimation of reducing sugars. Carbohydrates with free 
reducing sugars undergo isomerization, oxidation and cleavage, 
while the oxidizing agent copper is reduced. After reduction, copper 
reacts with an arsenomolybdate color-forming reagent and 
produces blue color. 

A standard curve was prepared using glucose (BDH) standard 
solution of 100 µg per ml. Briefly, 1 ml of the appropriately diluted 
sugar solution was added in separate test tube. Each tube then 

received 1 ml of copper reagent mixture prepared by mixing 
reagents in the ratio of 25:1 (v/v). After a thorough mixing, the tubes 
were   placed  in  boiling  water  for  20 min  and  quickly  cooled  by  

dipping them in cold water for 5 min. Solution 1 contained 25 g 
each of sodium carbonate, sodium potassium tartarate and 200 g of 
sodium sulphate (anhydrous) dissolved in 700 ml of distilled water 
and volume made to 1 L. Then 5 g of copper sulphate was 
dissolved in 100 ml of distilled water and one drop of conc.H2SO4 

added to it. Solution 2 had 25 g of ammonium molybdate (NH4)6 
MoO24.H2O dissolved in 450 ml of distilled water. Next, 3 g of 
sodium arsenate were dissolved in 25 ml of water, and the two 

solutions were mixed together with 21 ml of H2SO4 (conc.), and 
finally made up to 500 ml with distilled water. This reagent was 
stored in dark bottle and incubated at 37°C; this was found by 
Nelson (1944) to be necessary for the formation of the 
arsenomolybdate chromogenic compound. 1 ml of arseno-
molybdate reagent was added to each tube and contents were 
shaken rapidly until the evolution of CO2 was completed. The tubes 
were left for 15 min for the development of blue color. The optical 
densities were recorded at 500 nm against reagent blank, using 
spectrophotometer. The standard curve thus obtained.  

Reducing sugars were estimated in 100 µL of plant extract in the 
manner described above. The amount of reducing sugars was 
estimated on fresh weight (fwt) basis as µg sugars/g fwt. Data were 
subjected to analysis of variance, and the differences among 
means were determined by Duncan’s multiple range test (DMRT) at 
5% level using SPSS version 11 (SPSS, Inc., Chicago, IL). 

 
 

RESULTS 
 

The analysis of variance (Table 1) exhibited that water 
stress treatment, genotypes and their interaction was 
significant for reducing sugars. Table 2 shows mean 
comparisons for reducing sugars under irrigated and non-
irrigated condition. Genotype NR-175 had the highest 
(4550.13 µg sugars/g fwt) and DP-12 (260.48 µg 
sugars/g fwt) showed the lowest reducing sugars. NR-
175, DD-4, CIM-48, CIM-50, CIM-47, NR-234 and DP-12 
differ significantly with each other. Under non-irrigated 
condition for reducing sugars, significant differences were 
obtained for CIM-47, CIM-48, CIM-51, NR-230, NR-234, 
NR-241, NR-244, NR-264, DD-4 and DP-12. The mean 
reducing sugar was 1108.57 µg sugars/ g µg sugars/g fwt 
with an average increase of 44% over non-stressed 
plants. CIM-47 had the highest, while DP-12 showed the 
lowest reducing sugars (1922.07 and 301.25 µg sugars/ g 
fwt, respectively). Maximum increase in sugars was in 
CIM-51 followed by CIM-47 (474.51 and 403.60%, 
respectively), while minimum increase was in DD-4 
followed by DP-12 (5.03 and 15.65%, respectively). All 
genotypes showed increase in reducing sugars except 
CIM-48 (15.01%) and NR-175 (71.18%)  that  showed  an 
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Table 2. Mean values for reducing sugars (µg sugars/g fwt.) in bread wheat advanced lines 
under irrigated and non-irrigated condition. 
 

Genotypes 
Reducing sugar (μg sugars/g fwt) 

Irrigated Non-irrigated 

CIM-47 381.66 ± 1.66
ef
 1922.07 ± 0.00

a
 

CIM-48 789.41 ± 0.16
c
 670.89 ± 0.00

h
 

CIM-49 264.80 ± 5.06
h
 716.16 ± 0.01

gh
 

CIM-50 629.68 ± 0.00
d
 1012.15 ± 0.15

f
 

CIM-51 317.78 ± 5.95
g
 1825.69 ± 0.84

b
 

NR-175 4550.13 ± 0.13
a
 1311.09 ± 0.09

d
 

NR-230 358.01 ± 0.24
fg
 787.36 ± 0.24

g
 

NR-234 314.99 ± 0.78
g
 1053.14 ± 0.14

f
 

NR-241 368.11 ± 0.85
ef
 1405.88 ± 0.58

c
 

NR-244 407.37 ± 0.00
ef
 1141.17 ± 0.00

e
 

NR-264 418.30 ± 0.30
e
 1280.48 ± 0.00

d
 

DD-4 936.90 ± 0.00
b
 984.11 ± 0.46

f
 

DP-12 260.48 ± 0.38
h
 301.25 ± 0.00

i
 

Average 769.04 1108.57 

Percent promotion  44.14 
 

Means followed by the same letter within columns are non-significantly different (P≤0.05) according 

to DMR test. Values in last two rows indicate an average and percent promotion from control.  
 

 
 

inhibition in sugars as compared to irrigated plants. 
 
 
DISCUSSION 
 
Like other cellular constituents, starch and sugar levels 
are also affected by stress (Prado et al., 2000; Abdel-
Nasser and Abdel-Aal, 2002). Water stress caused a 
marked reduction in glucose, fructose and sucrose 
content of grains of sensitive cultivar (Saeedipour, 2011). 
An alteration has been noticed in reducing sugar content 
when water stress was imposed. All except two of the 
genotypes showed an increase over their respective 
control, and inhibition was also observed in CIM-48 and 
NR-175. It has been reported that drought tolerant varie-
ties accumulated more sucrose than sensitive ones 
(Kerepesi and Galiba, 2000). A drought-induced 
decrease in starch contents may also be associated with 
inhibition of starch synthesis (Geigenberger et al., 1997).  

Sugars have been long known to increase in a wide 
range of plants grown at low moisture level (Martin et al., 
1993; Rascio et al., 1994) and under salinity (Bolarin et 
al., 1995). The present research confirms the fact that 
reducing sugars seems to be a very sensitive and 
genotype related marker for water tolerance improve-
ment. There are also contradictory results on the effect of 
water and salt stress on sugar accumulation by many 
research workers. Some studies have reported an 
increased sugar contents (Pilon-Smits et al., 1995; Dubey 
and Singh, 1999; Kerepesi and Galiba 2000; Parida et 
al.,  2007;  Naureen  and  Naqvi  2010),  while  others  

have found sugar contents to be reduced (Hanson and 
Hitz, 1982) or remained constant (Morgan, 1992) during 
stress conditions. However, the current results indicated 
that water stress increased the reducing sugars in all 
genotypes except two. Zinselmeier et al. (1995, 1999) 
also found that drought stress consistently affect sugar 
metabolism. This observation has been supported by a 
number of researchers (Kameli and Losel, 1993; Al-
Hakimi et al., 1995; Kerepesi and Galiba, 2000; 
Saeedipour, 2011). Fructans can protect membranes or 
other cellular component from the adverse effects of 
drought in a manner similar to other carbon compounds, 
or perhaps fructans influence growth process directly 
(Pilon-Smits et al., 1995). An interaction was also highly 
significant regarding reducing sugars indicating the 
variable performance of genotypes. 
 
 
Conclusion 
 
The agronomic performance of those advanced lines that 
were more stable, like CIM-47, CIM-51, NR-234, NR-241 
and NR-264, had more elevation in reducing sugars 
compared to the moderate advanced lines. CIM-48 and 
NR-175 showed decline of sugars and their agronomic 
performance also indicated that they were not stable. 
These results led to a conclusion that tolerant genotypes 
showed an elevated reducing sugar, while those 
susceptible had decline sugar content. Reducing sugar 
content might therefore be a useful marker in the 
selection of stress tolerant genotypes under water stress.  
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