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An evaluation of the prediction accuracy of five ab initio gene prediction programs (that is, FGENESH, 
Genscan, HMMgene, GeneMark.hmm and FGENES) was conducted by the use of 110 human and mouse 
orthologous sequences. As expected, all programs presented different predictions with various ranges 
of accuracy. According to our results, FGENESH and Genscan generally had the maximum power to 
produce more reliable results in both nucleotide and exon levels than others. Although, both FGENES 
and GenMark.hmm predicted the highest number of exons (966 and 946 exons, respectively), when 
exon sensitivity (ESn), exon specificity (ESp) and (ESn+ESp/2) were considered, their overall accurate 
performance descended and was clustered in the lowest positions. It was also determined that all 
programs have lower power in predicting initial and terminal exons, as compared to internal exons, 
which suggested that such programs cannot accurately determine translational start sites (TSS) and 
translational stop codons (TSC) as internal exons, whose boundaries are highlighted by acceptor and 
donor sites. Apart from the species difference, it was finally recognized that the programs, FGENESH 
and GeneMark.hmm, presented much more sensitivity in detecting genes with low guanine-cytosine 
(GC) content.  
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INTRODUCTION 
 
Over the last 20 years, despite some difficulties observed 
in discovering eukaryotic genes which clearly result from 
low gene density as well as large spacers found between 
adjacent genes (Taher et al., 2004; Wang et al., 2004; 
Stanke et al., 2004; Do and Choi, 2005; Irimia et al., 
2009), there has been a great explosion in genomic 
sequence data with plentiful genomes of both eukaryotes 
and prokaryotes in different phases of sequencing and 
annotation. In fact, eukaryotic genomes are being 
sequenced at an ever-increasing rate (Do and Choi, 
2005; Abeel et al., 2008; Schweikert et al., 2009) and 
nearly 180 complete genomes of both eukaryotes and 
prokaryotes are  publicly available (http://en.wikipedia.org 
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/wiki/List_of_sequenced_eukaryotic_genomes).  
Annotation gene structures are therefore invariably the 

first step after the completion of the genome DNA 
sequence (Harrow et al., 2009; Schweikert et al., 2009). 
In view of that, developing quick, reliable and accurate 
methods for the prediction and annotation of gene 
structure is essential. However, two basic appro-aches 
have been generally developed for computational gene-
finding: intrinsic and extrinsic. Intrinsic (ab initio or de 
novo) methods deal strictly with DNA sequences and 
extract information regarding gene locations using 
statistical patterns inside and outside of gene regions, as 
well as those patterns typical of gene boundaries. They 
are actually the programs of choice in the absence of 
known transcript or protein sequences, or phylogeneti-
cally related genomes (Harrow et al., 2009).  

Pioneering studies using intrinsic statistical approaches 
were conducted in the early 1980s (Fickett, 1982; 
Gribskov et al., 1984; Staden, 1984). Since  then, a  com- 
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prehensive comparative analysis of a number of gene 
structure prediction programs was performed by the use 
of vertebrate genomic DNA (Burset and Guigo, 1996). 
Five years later, another study in this case was accom-
plished and a significant improvement in developing new 
gene finders was reported. Even though it was the same 
as that of previous studies, the accuracy of the seven 
used programs was systematically lower than that of 
those originally found (Rogic et al., 2001). To increase 
the performance ability of gene finders, a number of 
researches were then proposed by the use of different 
algorithms. In each one, some positive features were 
mentioned and reviewed by Mathe et al. (2002), Vladimir 
(2002), Wang et al. (2004), Brent and Guigo (2004), Do 
and Choi (2006), Zhu et al. (2007) and Harrow et al. 
(2009). Recently, in the study of Kwan et al. (2009), two 
ab initio gene prediction programs (GeneMark.hmm-ES 
3.0 and GreenGenie2) were examined using a total of 
140 experimental sequences of Chlamydomonas 
reinhardtii. In all gene, exon and nucleotide levels, Green 
Genie2 had the maximum sensitivity and specificity 
which, on the first two levels, were statistically significant. 
Nonetheless, the value of specificity and sensitivity was 
somehow in agreement with our results, which suggested 
that we still need more accurate programs to verify our 
current genomic sequence data. In addition, another 
novel gene prediction algorithm called Multivariate 
Entropy Distance (MED) was developed to improve and 
facilitate the comparative studies of prokaryotic genomes 
(Zhu et al., 2009). The program MED 2.0, as compared to 
the five current best prokaryotic gene finders could 
achieve a competitive high performance in gene 
prediction for both 5' and 3' end matches. On the other 
hand, if related genome sequences are available, the 
intrinsic information can be combined with patterns of 
genomic sequence conservation using programs often 
referred to as comparative (or dual- or multi-genome) 
gene finders. With these programs, maximum resolution 
is achieved when the compared genomes are at a 
phylogenetic distance such that there is maximum 
separation between conservation in coding and non-
coding regions. These approaches, nevertheless, are 
highly dependent upon the quantity and quality of pre-
existing sequence data (Hong Yao et al., 2005). 
Although, some investigations have indicated that the 
prediction accuracy is based on these programs, this 
method is more reliable than ab initio based programs 
with no employed-similarity (Salamov and Solovyev, 
2000; Guigo and Wiehe, 2003; Flicek et al., 2003; Parra 
et al., 2003; Knapp and Chen, 2006; Nasiri et al., 2011). 
Since the genomes of many organisms are yet to be 
sequenced entirely, ab initio gene prediction programs 
are still important annotation tools and the evaluation of 
these programs could be necessary for their 
improvement (Zhang, 2002; Lomsadze et al., 2005; Li et 
al., 2005; Stanke et al., 2008; Nasiri et al., 2011). 
Likewise, they are not very useful when the expected 
homology between the  gene  searched  for  and  the  known  

 
 
 
 
sequences is low. Lastly, these software cannot detect 
possible changes in nucleotide  sequences  due  to  RNA 
editing mechanisms (Fassetti et al., 2010).  

Even though quite a number of studies have been 
performed either to introduce a new gene finder with 
employing a novel algorithm or to evaluate the ability of 
various gene finding programs (Fickett, 1996; Stormo, 
2000; Zhang, 2002; Mathe et al., 2002; Vladimir, 2002; 
Wang et al., 2004; Brent and Guigo, 2004; Do and Choi, 
2006; Zhu et al., 2007; Harrow et al., 2009; Kwan et al., 
2009; Liang et al., 2009; Fassetti et al., 2010) regarding 
higher eukaryotic organisms, the accuracy of the current 
available gene prediction programs using ortologous 
genes is limited (Flicek et al., 2003; Parra et al., 2003; 
Knapp and Chen, 2006). However, these three research 
groups recommended TWINSCAN, SGP-2 and 
TWINSCAN programs as the most reliable programs, 
respectively. At present, it is noticeable that although, 
there are some new programs including mSplicer (Ratsch 
et al., 2007), Craig (Bernal et al., 2007), Conrad 
(DeCaprio et al., 2007) and Contrast (Gross and Brent, 
2006), there is no easy-to-use web application available. 
To employ these tools, the respective packages have to 
be downloaded and installed, which in some cases 
requires substantial programming knowledge as well as 
the accessibility of sufficient computational power for 
each user. In contrast, the conventional ab initio gene 
finders are not only available as online and easy-to-use, 
but also majority of them according to the previous and 
current studies seem to be able to generate prediction 
with acceptable accuracy.  

In this study, an effort was made accordingly to assess 
the performance ability of five conventional de novo gene 
prediction programs on account of predicting different 
parts of a given protein coding sequence so that the 
users be able to choose the best program(s) in 
accordance with their research goals.  
 
 
MATERIALS AND METHODS  
 
Sequence data set 
 

In assessing five ab initio gene prediction programs, a data set 
consisting of 110 known orthologous genes of human and mouse 
were employed. This data collection, in both organisms, consisted 
of three genes with no introns in the open reading frame (commonly 
referred to as a ‘single exon gene’) and the rest were multi-exon 
genes. The number exons per gene vary from two to 30 with an 
average number of 8.37 for human and 8.50 for mouse. Likewise, in 
both genomes, around 927 coding exons (totally, 152488 bp) with a 
mean length of 164.5 base pairs were detected in a real 
experimental data. As the last point, our data is composed of 
1,224,136 nucleotides (nt) over 110 sequences with a mean 
sequence length of 11,128.5 bases.  
 
 
Programs tested 
 
The research was conducted to realize the potential of five ab initio 
gene finding programs, that is, FGENESH (Salamov and Solovyev, 
2000),   Genscan   (Burge   and   Karlin, 1997),  HMMgene  (Krogh,
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Table 1. List of the five ab inito gene prediction programs used for this study. 
 

Program Organism 
Employed 
algorithm 

Available at 

FGENES Human DP http://genomic.sanger.ac.uk/gf/ 

FGENESH Human, mouse, Drosophila, rice, , other 
HMM 

 

http://www.softberry.com/berry.phtml?topic=gfind-
file 

Genscan Vertebrates, Arabidopsis and maize GHMM http://genes.mit.edu/GENSCAN.html 

Genemark.hmm Human, mouse, Drosophila, other 
GHMM 

 

http://opal.biology.gatech.edu/GeneMark/eukhmm.
ci 

HMMgene Vertebrates and C. elegans 
GHMM 

 
http://l25.itba.mi.cnr.it/~webgene/wwwgene.html 

 

DP, Dynamic programming; HMM, hidden Markov model; GHMM, generalized HMM. 
 
 
 
1997),  GeneMark.  hmm   (Lukashin  and  Borodovsky,  1998)  and 
FGENES (V. Solovyev, unpublished data) (Table 1).  
 
 
Accuracy measurement  
 
Prediction accuracy of all five ab initio programs was measured at 
two different levels: coding nucleotide sequence and exonic 
structure. Furthermore, we examined precision based on guanine-
cytosine (GC) content. Note that the exons predicted on the forward 
strand containing known genic sequences were only analyzed 
(predictions for the reverse strand were not considered, because all 
prediction results were compared with the known actual gene 
structures in our test data sets, all of which were identified in 
forward strand in the NCBI) and compared to the actual coding 
exons.  
 
 
Nucleotide level statistics 

 
Consistent with Burset and Guigo (1996), the following four 
metrics were calculated: 

 
TP = the number of coding nucleotides predicted as coding; 
TN = the number of noncoding nucleotides predicted as noncoding; 
FP = the number of noncoding nucleotides predicted as coding; 
FN = the number of coding nucleotides predicted as noncoding. 
 
As the second step, both the nucleotide sensitivity Sn, (that is, the 
proportion of coding nucleotides that are correctly predicted as 
coding) and nucleotide specificity Sp, (that is, the proportion of 
nucleotides predicted as coding that are actually coding) values 
were estimated using the following formulas:  
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It has been demonstrated that high Sn can be achieved with little 
Sp and vice versa (Burset and Guigo, 1996). Accordingly, an 
additional parameter was defined called correlation coefficient (CC), 
reflecting both Sn and Sp. Correlation coefficient is actually defined 
as: 
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In   order   to   assess   the   global   performance  of  any  program,  

approximate correlation (AC) was also defined (Burset and Guigo, 
1996); 
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Exon level statistics 
 
It has been demonstrated that the prediction precision at the exon 
level is important when designing primers or probes (Li et al., 2005). 
In this regard, exon specificity (ESp) is defined as the proportion of 
exons that are actually coded, whereas, exon sensitivity (ESn) is 
the proportion of actual exons in the test sequence that is correctly 
predicted (Burset and Guigo, 1996):  
 

 

PE

TE
ESp =

,

 

AE

TE
ESn =

 
 

where, TE (true exons) is the number of correctly predicted exons, 
AE (actual exons) is the number of annotated exons and PE 
(predicted exons) is the number of predicted exons.  

In general, during a prediction process through related programs, 
annotated exons can be divided into exons that are exactly 
predicted, partially predicted, overlapped, missed or wrong (not 
overlapped with any predicted exon), while an actual exon is 
counted as a missing exon, and if it does not have a single base 
predicted, the term wrong exon is applied when no single predicted 
base is present in the actual exons. The following formulas have 
made the measurement of both items possible:  
 

 )
exons actual  of No.

exons missing  of No.
(=ME

 )
exons predicted  of No.

exons   wrongof No.
(=WE   

 

Finally, to explore the rate of the performance of each program in 
predicting various exon classes, all exons were divided into four 
classes: 5′ exons (or initial exon), internal exons, 3′ exons (or 
terminal exon) and intronless exons (or, simply, intronless genes) 
and further subdivided into 13 subclasses, according to their coding 
content (Zhang, 2002).  



1548        Afr. J. Biotechnol. 
 
 
 

Table 2. The relative nucleotide and exon level precision of the five Ab initio gene finding programs. 
  

Parameter 
Nucleotide level  Exon level 

Sn Sp CC AC  ESn ESp (ESn+ESp)/2 ME% WE% 

Human           

FGENES  0.95 0.93 0.92 0.93  0.80 0.84 0.86 6.00 9.90 

FGENESH 0.95 0.93 0.93 0.93  0.85 0.86 0.84 6.90 6.70 

Genscan 0.95 0.90 0.91 0.91  0.80 0.79 0.75 5.50 9.00 

Genemark.hmm 0.89 0.92 0.89 0.89  0.73 0.75 0.74 11.50 11.10 

HMMgene 0.92 0.93 0.91 0.91  0.81 0.83 0.82 8.80 6.30 

           

Mouse           

FGENES 0.90 0.88 0.87 0.87  0.80 0.76 0.78 7.70 12.9 

FGENESH 0.98 0.93 0.94 0.95  0.90 0.88 0.88 3.80 6.00 

Genscan 0.98 0.91 0.92 0.93  0.83 0.81 0.79 5.10 9.50 

Genemark.hmm 0.95 0.88 0.89 0.90  0.80 0.74 0.75 8.00 14.60 

HMMgene 0.92 0.96 0.93 0.93  0.84 0.87 0.85 6.90 4.10 

           

Whole data           

FGENES 0.93 0.90 0.90 0.90  0.80 0.80 0.82 6.90 11.40 

FGENESH  0.96 0.93 0.930 0.94  0.88 0.87 0.86 5.40 6.35 

Genscan  0.96 0.90 0.92 0.92  0.82 0.80 0.77 5.30 9.25 

Genemark.hmm 0.92 0.90 0.89 0.89  0.77 0.75 0.75 9.80 12.90 

HMMgene 0.92 0.94 0.92 0.92  0.83 0.85 0.83 7.90 5.20 
 

*For each sequence, the exons predicted on the forward (+) strand was compared to the annotated exons. The standard 
measures of predictive accuracy on nucleotide and exon level were measured for each sequence and averaged over all 
sequences for which they were defined. This was done separately for each of the programs tested. 

 
 
 

RESULTS 
 
All sequences were analyzed using each program. To 
verify the correct annotation, only results from the 
positive strands were considered and observed for a total 
of 550 predictions. Each predicted sequence was then 
compared to its coding sequences (CDS) annotation of 
GenBank entry. The prediction accuracy at both nucle-
otide and exon levels are shown in Table 2.  
 
 
Nucleotide level precision 
 
At the nucleotide level, Genscan had the highest 
sensitivity (0.96), while GeneMark.hmm had the least 
(0.89). Further, both FGENESH and HMMgene, with the 
specificity (0.93) were determined as the most accurate 
programs, whereas the minimum specificity was detected 
only for Genscan (0.90). Surprisingly, when the values of 
CC and AC were calculated, the maximum CC (0.93) and 
AC (0.93) values were detected only for FGENESH 
program, whereas the reverse was true for Gene-
Mark.hmm, with the lowest seen for CC (0.88) and AC 
(0.89), suggesting that the prediction of FGENESH in the 
case of predicting human genes could be more helpful, at 
least, when compared with the other four programs. 
Regarding mouse genome, FGNENS was the feeblest 

program, but unexpectedly in both Sn and Sp, it was 0.90 
and 0.87, respectively. On the other hand, FGENESH 
and HMMgene, in the same order, experienced the 
greatest increase in both Sn (0.98) and Sp (0.96). 
Nevertheless, when the following parameters, CC and 
AC, were calculated, it was observed that although, 
similar to the previous situations, FGENESH was the 
leader with 0.94 and 0.95, respectively, the lowest, CC 
(0.87) and AC (0.87), were identified only for FGENES. 
We notified that apart from some differences among 
these programs, such observations, in particular 
regarding Genscan and HMMgene, apparently are not 
statistically significant, suggesting that users can use 
them as alternative programs. In order to confirm our 
results, we also constructed a data collection, known as 
whole data, and as could be seen, FGENESH had more 
value of AC (0.94) and CC (0.93) than GenMark.hmm, 
which again emerged as the weakest program.  
 
 
Exon level accuracy  
 
In this situation, concerning human sequences, the 
descending order of the programs based on the values of 
(ESn + ESp)/2 were: FGENES (0.86), FGENESH (0.84), 
HMMgene (0.82), Genscan (0.75) and GeneMark.hmm 
(0.74).  In  addition,  FGENES  together  with  FGENESH,  
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Table 3. Predicted number of exons in each class on multi-exon genes in three different data. The data given in the table are the TE/PE.� 
 

Class 

Human  Mouse  Whole data 

Initial Internal Terminal Total  Initial Internal Terminal Total  Initial Internal Terminal Total 

AE 53 354 53 460  54 358 54 466  107 712 107 926 

FGENES 38/57 317/363 45/57 400/477  44/61 298/368 32/60 374/489  82/118 615/731 77/117 774/966 

FGENESH 36/48 323/360 37/44 433/452  37/50 321/374 45/52 403/476  73/98 644/734 82/96 836/928 

Genscan 30/45 321/386 37/45 388/476  32/46 335/392 41/50 408/488  62/91 656/778 78/95 796/964 

Genemark.hmm 15/31 304/356 28/37 347/424  20/40 323/434 38/51 381/525  35/71 627/790 66/88 728/949 

HMMgene 35/48 292/345 40/49 367/442  37/48 295/350 44/47 376/445  72/96 587/690 84/96 743/887 
 

�TE, True exons; AE, actual exons; PE, predicted exons. 

 
 
 
and only GeneMark.hmm had the lowest and 
highest percentage of the missing and wrong 
exons. Regarding mouse data, FGENESH again 
had the best performance in terms of ESn, ESp 
and CC. Although, both GeneMark.hmm and 
FGENES (as the weakest programs) had equal 
ESn (0.80), the efficiency of the second one 
moved up a little more when its ESp and CC were 
taken into account. Furthermore, the average 
proportion of the missing exons (ME) was 3.8 and 
8.0% for FGENESH and Genemark.hmm, respec-
tively, which was lower than that of humans. While 
regarding the second item as wrong exons (WE), 
a three-fold growth from 4 to 13% could be 
observed, nearly the same as that of humans. 
Therefore, these programs seem to have more 
power in predicting many more exons correctly 
when they are applied to mouse sequences.  

Eventually, when all sequences were con-
sidered, programs such as FGENESH and 
HMMgene were identified as the first and second top 
programs and again GeneMark.hmm emerged as 
a program with the lowest prediction accuracy of 
the exons boundaries. Regarding ME and WE, 
GeneMark.hmm had the maximum values of the 
ME and WE with 9.80 and 12.90%, respectively.  

Recognition power of programs in 
distinguishing various exon classes  
 
Briefly, to predict the number of initial exons 
precisely, the programs such as FGENESH and 
FGENES had more potential when they were 
loaded by human and mouse sequence data, 
while both HMMgene and FGENESH were 
detected as the best programs when total data 
was employed (Table 3). On the other hand, 
GeneMark.hmm had the lowest accuracy in this 
position for all the three mentioned categories. At 
the second exon class (internal exons), Genscan 
was concluded as the best program concerning 
mouse sequences, whereas FGENESH showed 
the greatest increase when both human and 
whole sequence data were taken into account. In 
addition, though FGENES program for anticipating 
terminal exon can be a reliable source, its 
potential is dubious as the mouse and whole data 
is taken into account. Since plenty of gene 
prediction tools are now available freely, it is 
accordingly advisable to utilize other powerful 
programs instead of FGENES, such as Genscan, 
HMMgene or FGENESH in acquiring more 
reliable results at least here.  

GC content 
 
GC-rich regions include many genes with short 
introns, while GC-poor regions are essentially 
deserts of genes (Galtier et al., 2001). Moreover, 
it has been suggested that the distribution of GC 
content in mammals could have some functional 
relevance related to genes (Mouchiroud et al., 
1991; Duret et al., 1995; Jabari and Bernardi, 
1998; Galtiera et al., 2001). 

Although, the overall GC content of the mouse 
genome is slightly higher than that of human (42 
vs. 41%), the human genome exhibits a much 
greater variability when measured using non-
overlapping 20 kb windows. Instead, the mouse 
genome appears to have fewer CpG islands than 
the human genome (that is, 15,000 vs. 23,000) 
(Waterstonet et al., 2002). However, this could be 
an artifact resulting from the mouse genome 
having significantly less variability in the GC 
content than the human genome. Thus, if the 
same parameters are used to scan both genomes 
(a requirement to get comparable results), it is 
expected that mouse will have fewer CpG islands, 
since it has fewer segments with extremely high 
GC content. In the human  genome,  2.7%  of  the  
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Table 4. Sensitivity and specificity of predictions for various classes of exons in three different genomic data.  
 

Programs 
Initial  Internal  Terminal  Total 

ESn ESp  ESn ESp  ESn ESp  ESn ESp 

Human            

FGENES 0.72 0.66  0.9 0.87  0.85 0.79  0.82 0.77 

FGENESH 0.68 0.75  0.92 0.9  0.7 0.84  0.77 0.83 

Genscan 0.57 0.67  0.91 0.83  0.7 0.82  0.73 0.77 

Genemark.hmm 0.28 0.5  0.86 0.85  0.53 0.76  0.56 0.70 

HMMgene 0.67 0.73  0.83 0.84  0.75 0.81  0.75 0.79 

            

Mouse            

FGENES 0.81 0.72  0.83 0.81  0.59 0.53  0.74 0.69 

FGENESH 0.68 0.74  0.90 0.86  0.83 0.87  0.80 0.82 

Genscan 0.59 0.7  0.94 0.85  0.76 0.82  0.76 0.79 

Genemark.hmm 0.37 0.5  0.9 0.74  0.7 0.75  0.66 0.66 

HMMgene 0.68 0.77  0.82 0.84  0.81 0.93  0.77 0.85 

            

Whole data            

FGENES 0.77 0.69  0.87 0.84  0.72 0.66  0.79 0.73 

FGENESH 0.68 0.75  0.91 0.88  0.76 0.86  0.78 0.83 

Genscan 0.58 0.69  0.93 0.84  0.73 0.82  0.75 0.78 

Genemark.hmm 0.33 0.50  0.88 0.80  0.62 0.76  0.61 0.69 

HMMgene 0.68 0.75  0.83 0.84  0.78 0.87  0.76 0.82 
 
 
 

20 kb segments have GC content greater than 56% or 
less than 33%; this kind of variability is virtually absent in 
the mouse genome (Waterston et al., 2002), while the 
correlation between gene distribution and GC content has 
been shown in humans (Zoubak and Bernardi, 1996), as 
well as in other vertebrates (Bernardi et al., 1985). The 
mouse genome sequencing project demonstrated that 
gene distribution in both mouse and human genomes 
correlates well with relative rather than absolute GC 
content. For example, 75 to 80% of the genes of both 
species reside in the GC-richest half of the geno-
me. Thus, the mouse genome demonstrates the same 
trends in gene density, while it is significantly less 
extreme in the GC-content than the human genome 
(Waterston et al., 2002).Basically, ab initio gene predic-
tion methods rely on two types of sequence information: 
searching by signal and searching by content (Wang et 
al., 2004; Blanco and Guigo, 2005). In order to 
discriminate protein-coding regions from non-coding 
regions, a number of content-based measures which are 
also known as coding statistics can be used (Ficket and 
Tung, 1992; Gelfand, 1995; Guigo, 1999). Among the 
numerous methods for the computation of content-based 
measures, hexamer frequency, usually in the form of 
codon position-dependent fifth-order Markov models 
(Borodovsky and McIninch, 1993), seems to have 
maximal discriminative power; and surprisingly, it has 
been demonstrated that coding statistics used by gene-
finding programs (codon, dicodon and hexamer 
frequency) are strongly dependent on GC content (Guigo 

and Fickett, 1995). Moreover, by a brief look at the 
previous studies in the case of gene prediction programs, 
it is obvious that not only the performance of ab intio 
based methods could be affected by GC content, but also 
other available gene finding programs could be affected 
as well on the basis of sequence similarity or alignment 
(Snyder and Stormo, 1995; Burset and Guigo, 1996; 
Rogic et al., 2001; Yao et al., 2005; Li et al., 2005). This 
has largely been due to the fact that GC-rich regions 
include a large number of genes with short introns, 
whereas GC-poor regions are essentially deserts of 
genes (Xu et al., 1994; Lopez et al., 1994; Snyder and 
Stormo, 1995; Burset and Guigo, 1996; Rogic et al., 
2001). Anyway, the question is: to what extent could such 
parameters be significant and which programs are more 
sensitive against this parameter? 

In order to assess these issues, all employed genes in 
accordance with their GC content were divided into three 
parts: lower than 47% (27% of all sequences), between 
48 and 52% (35%) and finally higher than 53%, con-
taining 45 accessions (48%). The GC content of the both 
genomes varied from 34 to 65%. Table 4 presents the 
programs’ accuracy measures on the sequences with 
different GC contents. Consistent with the observations 
made in Burset and Guigo (1996) and Rogic et al. (2001), 
some programs were sensitive to the GC content of 
asequence, and performed better when the sequence is 
GC-rich. The programs that exhibited this trend were 
FGENESH and GeneMark.hmm on both levels, and 
HMMgene on the exon level.  Among  programs  that  are  



 
 
 
 
known to use different parameter sets for different GC 
content, Genscan and FGENES’s prediction accuracy is 
relatively independent of the base composition.  
 
 
DISCUSSION 
 
In this study, a test data set including 110 known 
orthologous genes of human and mouse were employed 
in order to examine which conventional de novo gene 
prediction programs have more power to anticipate 
different parts of human and mouse protein coding 
sequences. Unlike previous studies (Burset and Guigo, 
1996; Rogic et al., 2001; Yao et al., 2005; Li et al., 2005; 
Knapp and chen, 2006), in this study, each program had 
equal chance of being loaded with all the used 
accessions. Predictably, all programs had the tendency 
to produce different and occasionally contradictory 
results.  

In all three categories, the preference of FGENESH 
program, as compared to the other four programs, was 
irrecusable. Consequently, it could be concluded that 
FGENESH has enough potential to generate more 
reliable predictions than the others. This finding was in 
agreement with the studies of Burge and Karlin (1998), 
Yao et al. (2005) and Li et al. (2005), all of which reported 
FGENESH as the best gene prediction program to predict 
different parts of humans, maize and rice genome 
sequences, respectively. Instead, at the study of 
Schweikert et al. (2009), the program mGene was fairly 
better against programs such as FGENESH, Craig and 
Augustus in all nucleotide, exon, gene and transcript 
levels. In the same study, the values of accuracy in 
nucleotide and exon levels were the first and second 
maximum amount of validation, while in the case of 
predicting transcripts and the numbers of genes, these 
programs appear to require more improvements. 
Similarly, Nasiri et al. (2011) found that FGENESH+ as 
compared to FGENESH and other ab initio programs 
could make more reliable results, and again, prediction 
accuracy at the nucleotide level was the superior. In the 
current study, all programs, like those of previous studies 
(Rogic et al., 2001; Schweikert et al., 2009; Nasiri et al., 
2011), generated more reliable outputs at the nucleotide 
versus exon level. To explain this phenomenon, the 
corresponding formula of both levels should be analyzed. 
In reality, a little variation in the number of PE, true exon 
TE and AE can be accompanied by significant 
differences in the final results (that is, ESp, ESn and CC), 
while at the nucleotide level, since a large number of 
nucleotides are examined, the majority is often predicted 
precisely. Accordingly, each variation can produce slight 
differences in the final results (that is, Sp, Sn and CC). It 
is noticeable that in the study of Rogic et al. (2001), both 
Genscan and HMMgene programs with the highest CC 
(0.91) were marked as the most trustworthy sources, and 
if FGENESH is ignored, the both programs  were  located  
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in the first position, suggesting that they can still produce 
reliable predictions. As could be seen, the programs such 
as GeneMark.hmm and FGNENS in our ranking were 
located on the nethermost classes, so their performance 
is somehow questionable. As a reason, FGENES was 
originally developed to predict human genes; accordingly, 
it is advisable to use other available programs in case of 
anticipating mouse or even human sequences. On the 
other hand, since orthologs are genes that have a vertical 
descent relationship from a common ancestor and 
encode proteins with the same function in different 
species (Koonin et al., 1996), consequently, just a few 
rare and insignificant variations could be observed, 
probably due to different evolutionary agents such as 
point mutations, insertions, deletions, translocations 
and/or inversion that have changed the whole structure of 
gene(s) over a long period of time.  
With the exception of some negligible differences, at the 
exon level, FGENESH with the highest values of (ESn + 
ESp)/2 as CC and ESn appeared again as the most 
powerful program in all the three classes. On the other 
hand, GeneMark.hmm had the least significant position, 
not just because of having the lowest values of ESn, ESp 
and CC, but also because of its highest percentage of 
missing and wrong exons. Ignoring some minor 
discrepancies which are common among different 
studies, these results are somehow consistent with 
previous investigations. For instance, in the study of Yao 
et al. (2005), FGENESH exhibited the maximum level of 
ESn, ESp and CC, and had correspondently low 
percentages of both ME and WE; but contrary to our 
results in which GeneMark.hmm had the lowest degree of 
worth, GeneMark.hmm and Genscan were the second 
and third important programs. Moreover, FGENESH plus 
BGF, in the study of Li et al. (2005) and all the three 
programs including FGENES, Genscan and HMMgene in 
the study of Rogic et al. (2001), were identified as 
programs with low ME and WE. In addition, in accor-
dance with Rogic et al. (2001), Li et al. (2005), and to 
some extent, Burset and Guigo (1996), and Knapp and 
Chen (2006), for each program, there was no significant 
variation between the percentage of ME and WE. 
Nonetheless, if the report of Yao et al. (2005) is 
considered, particularly for the case of Genscan and 
GeneMark.hmm data, a seven- and four-fold trend could 
be observed, respectively. Interestingly, even though the 
model parameters of the programs were learnt from the 
set of human sequences, in some cases, the values for 
mouse sequences were higher than human sequences. 
Nonetheless, it looks like these should not be statistically 
significant and possibly such differences would occur 
even if the results on two different human sequence sets 
or any other organism were compared. This hypothesis is 
also supported by the comparison of the human and 
mouse grammars constructed by Dong and Searls (1994) 
and Rogic et al. (2001), and also by different data sets of 
rice   genome    (Li    et   al.,  2005)  where  no  significant  
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Table 5. Accuracy versus G + C content measured in three data sets. 
 

GC content 
<48%  48-52%  >>>>52% 

AC (ESn+ESp)/2  AC (ESn+ESp)/2  AC (ESn+ESp)/2 

Human (13)   (15)   (27)  

FGENES  0.93 0.80  0.95 0.89  0.91 0.88 

FGENESH 0.92 0.75  0.94 0.81  0.93 0.89 

Genscan 0.92 0.76  0.93 0.78  0.94 0.72 

Genemark.hmm 0.92 0.69  0.85 0.70  0.9 0.79 

HMMgene 0.87 0.70  0.90 0.84  0.94 0.87 

         

Mouse (14)   (23)   (18)  

FGENES 0.90 0.82  0.84 0.79  0.87 0.74 

FGENESH 0.93 0.91  0.96 0.89  0.96 0.82 

Genscan 0.93 0.75  0.95 0.87  0.93 0.73 

Genemark.hmm 0.90 0.73  0.88 0.78  0.93 0.72 

HMMgene 0.89 0.81  0.96 0.87  0.92 0.86 

         

Whole data (27)   (38)   (45)  

FGENES 0.92 0.80  0.88 0.84  90 0.82 

FGENESH  0.93 0.84  0.94 0.86  0.94 0.86 

Genscan  0.93 0.75  0.94 0.83  0.91 0.73 

Genemark.hmm 0.89 0.71  0.91 0.75  0.90 0.76 

HMMgene 0.91 0.76  0.93 0.86  0.93 0.86 
 
 
 

differences were found.  
Having a brief look at the previous studies, for example 

on vertebrate, Drosophila, vertebrate, maize, rice, and 
finally human sequences, the programs such as 
FGENESH, Genscan, Genscan, FGENESH, BGF plus 
FGENESH, Genzilla plus Genomescan appear to predict 
internal exons better than initial and terminal exons, 
respectively (that is, those beginning with start site and 
ending with a stop codon) (Burge and Karlin, 1998; 
Salamov and Solovyev, 2000; Rogic et al., 2001; Yao et 
al., 2005; Li et al., 2005; Knapp and Chen, 2006). This 
implies that the ability of these programs to detect the 
correct start and stop codons is probably a little weaker 
than to identify 5' and 3' splice sites correctly. In this 
regard, in the current study, FGENESH and HMMgene, 
as compared to other programs, predicted internal exons 
much better than the initial and terminal exons (Table 5). 
Moreover, it is noticeable that although in the study of 
Yao et al. (2005) on maize, Genscan predicted initial and 
terminal exons better than it did for internal exons. In this 
study, such a result was not observed, and it suggested 
that different programs gave various responses to the 
species under study or different genes with various 
genetic features. This demonstrates that the organism 
under study is one of the most important items in 
selecting one or more programs to compare their results 
with laboratory findings obtained from cloning 
procedures.  

It  is  noted  that  in  such  investigations,  all  measured  

parameters are often based on average data (for 
example, average of 110 data for each program). In other 
words, if all predictions are examined one by one, 
undoubtedly, a program with high efficiency (for example, 
FGENESH) may not predict the structure of a number of 
genes accurately, while a program with lower value of 
accuracy (e.g., FGENES) can propose a better prediction 
for the same number of genes. For instance, when 
accession U78027 containing 7 exons was loaded by 
FGENESH, the terminal exon was missed, while as the 
same accession was run by FGENES, all 7 exons were 
anticipated precisely (Figure 1). Surprisingly, the same as 
FGENESH, Genscan (as the second best program) could 
not predict terminal exon at all. As a result, it is advisable 
to integrate the results of multiple ab initio programs as a 
scientific solution. Polling ab initio and sequence 
similarity based approaches is another way to improve 
the accuracy of gene prediction, and is likely to be more 
widely used as the number of sequenced genomes 
increases (Mathe et al., 2002). Programs such as 
Twinscan (Korf et al., 2001), SGP2 (Para et al., 2003), 
SLAM (Cawley et al., 2003), AGenDA (Taher et al., 2004) 
and Combiner (Allen et al., 2006) can improve the 
accuracy of gene predictions through these two appro-
aches. Overall, it seems that introducing only one 
program as the best one for all the current species is 
impossible and users should consider this issue as a 
critical item. Or else, when performing a given study, one 
may    encounter    lots    of    severe    incompatible   and  
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Figure 1. (A) Representation of exonic structure of the human FTP3 gene (U78027), displayed using the APOLLO graphical interactive interface (Lewis et al., 
2003). The gene comprised 7 coding exons on the forward strand. (B) and (C) FGENESH and FGENES outputs in the sequence of the FTP3 gene (U78027), 
respectively. 

 
 
 

ambiguous findings; such as, presenting a correct 
annotation will be somehow complicated. Like-
wise, since only the genome of a few number of 
organisms have been sequenced entirely, the 
users inevitably have to utilize ab initio based 
methods when the relative sequence of a given 
coding sequence is not accessible.  

Regarding transcript prediction, the condition 
has become worse. In other words, according to 
the EGASP community experiment organized in 

2005 (Guigo et al., 2006), finding the complete 
transcript structure was more challenging, with the 
most accurate methods correctly predicting only 
about 60% of the annotated protein-coding trans-
cripts, although, computational methods were 
quite accurate in identifying protein-coding exons 
with an overall accuracy of more than 80% (in 
terms of both the fraction of real exons correctly 
identified and the fraction of predicted exons that 
are real) which were in agreement with our current 

results. Regarding protein-coding transcripts, the 
same results were also reported by Schweikert et 
al. (2009). This indicates that com-putational 
methods are yet to totally replace human exper-
tise in gene annotation.  

Another problem in identifying the protein 
coding sequences of eukaryotic genomes is the 
existence of repetitive elements. Actually, contrary 
to the typically streamlined genomes of 
prokaryotes, many eukaryotic genomes are 
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riddled with long intergenic regions, spliceosomal introns, 
and repetitive elements (Irimia et al., 2009). The pre-
sence of repetitive elements is a severe problem in 
finding protein coding genes, particularly when a 
sequence with large scale is to be annotated and 
assembled. In fact, gene prediction programs ignore such 
stretches in making their predictions. Repeatmasker 
(Smith and Green, unpublished data) is one popular 
program used to find and mask repetitive elements. 
Actually, if a given sequence is masked, gene finders 
tend to predict less false-positive exons, because coding 
exons tend not to overlap or contain repetitive elements. 
The majority of genes that contain very short repetitive 
element, and no bias was observed in the programs’ 
output. By contrast, approximately 40% of the human 
genome does contain such elements; but when analyzing 
large genomic sequences, the simple act of masking the 
sequence can have dramatic effects. For example, 
Genscan and GeneID predicted 1128 and 1119 genes in 
the unmasked sequence of human chromosome 22, but 
when the sequence was masked, the number of 
predicted genes dropped to 789 and 730, respectively 
(Blanco and Guigo, 2005). Accordingly, it is extremely 
clear that the length of a known sequence, its chromo-
somal position (for example, euchromatin or hetero-
chromatin regions) and also the number of genes of an 
experimental genomic sequence can affect the prediction 
accuracy of each program. Finally, it should also be 
notified that if unmasked data are employed, a number of 
predicted exons would consequently be false-positive, 
while some actual exons would possibly be slipped 
whenever masked data are utilized. This is due to the 
different categories of repetitive DNA (that is, Satellite 
DNA, minisatellites and microsatellites known as 
Tandem-repetitive DNA or transposable elements known 
as interspersed repeats) which have been reported in 
both gene-rich regions, such as short terminal inverted 
repeats (TIRs) (Gierl and Saedler, 1992), or noncoding 
areas including Satellite DNA which are often located in 
subtelomeric or centromeric regions. It is accordingly 
advisable to run the programs with both masked and 
unmasked sequences as the input. 

As an additional finding, it was observed here that the 
rate of GC content of each gene could play a 
fundamental role in prediction accuracy of each program. 
The condition, for instance, concerning the programs 
including FGENESH and GeneMark.hmm has become 
worse, as long as they are loaded by low-density GC 
genes, but FGENES and Genscan appear to perform 
slightly better in GC-poor sequences. In our study, 
prediction accuracy of FGENES was correlated with the 
GC content, while Rogic et al. (2001) clustered this 
program as a gene finder by means of an independent 
relation with the GC content. However, observing some 
unbiased errors which may occur when different 
programs with different algorithms were utilized was 
avoided. Accordingly, to predict the  structure  of a coding 
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sequence, users should also measure the rate of the GC 
content of a given coding sequence.  

In order to find a relation between the number of AE 
and the PE plus correct exon on the whole sequences, in 
this study, the correlation coefficient between them was 
also computed. Surprisingly, regardless of the kind of 
exon classes, a significant positive linear correlation was 
computed between the numbers of actual exons and 
predicted plus correct exon on the whole data. For all five 
programs, the values of R

2
 (between the number of 

actual and predicted exon) ranged from 0.79 (Gene-
Mark.hmm) to 0.96 (FGENESH). This option varied from 
0.80 (HMMgene) to 0.95 for both Genscan and 
FGENESH, but with regards to the number of actual and 
correct exon (Figure 2). These findings illustrate that 
whenever FGENESH program is used, the number of 
both wrong and missing exon will possibly decline; 
consequently, a few false positive and false negative 
should be detected as it is shown in our investigation. 
Meanwhile, about having lower missing exon, Genscan 
seems to have enough potential as a superseded option. 
Conversely, if both GeneMark.hmm and HMMgene were 
used, the rate of wrong and missing exon, and conse-
quently the number of false positive and false negative 
will move up, respectively. To avoid observing a great 
deal of false positives, particularly at the exon level, the 
probability of a predicted exon should be considered. In 
this case, some programs such as Genscan can compute 
the probability value (P) of each prediction, and it has 
been suggested that exons with lower probability 
(P<0.50) should be deemed unreliable, unless the same 
output is detected using other programs. High-probability 

predictions (P>0.99) can be used for example in the 
rational design of polymerase chain reaction (PCR) 
primers or for other purposes, where extremely high 
confidence is necessary. Anyway, normally all employed 
programs cannot predict gene structures accurately as it 
is shown in our results and also other available 
investigations.  
 
 
Conclusion 
 
In conclusion, despite the fact that no gene finder can be 
definitely recommended as the best, using programs 
such as FGENESH and Gensacn seems to produce the 
most noteworthy prediction than others. Nonetheless, 
since each organism can be accompanied by a unique 
genetic background, some programs are species-specific 
and finally the algorithms used in some programs are 
different than others. Moreover, such occasions should 
be taken into account by users of gene finding programs. 
In the interim, to improve gene structure predictions, a 
combination of gene prediction results from multiple ab 
initio programs and also integration of ab initio and 
sequence similarity based methods together could be 
useful. At last, since majority of  the  genes  exist  in  GC- 
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Figure 2. An example of calculating correlation coefficient between (A) the number of actual and predicted exons, and 
(B) the number of actual and true exons of FGENESH program of the whole data.  

 
 
 

rich regions, paying attention to the rate of sensitivity 
value of each program versus this item should be 
considered either in applying contemporary programs or 
developing new gene finders with popular or novel 
algorithms.  
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