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ABSTRACT 

Purpose: The central purpose of the study is to model the process capability of drift-inherent 

manufacturing processes by testing the efficacy of a novel approach that filters trend from raw 

process data before applying statistical process control tools. A secondary aim was to ascertain 

the intrinsic capability of the process following the filtering. 

Design/Methodology/Approach: Specifically, the study focused on processes in a nail-wire 

drawing and tested a method for analysing data from naturally-drifting processes that involves 

filtering trends from data before applying appropriate tools to verify the state of statistical 

control and capability of the process. The physical foundation for this work is based on data 

collected from a nail-wire drawing process A total of 250 data points were gathered over 50 

days in two successive instances of 125 points, each spanning 25 days. Data were checked for 

normality followed by mathematical conditioning to filter out the wear trend before analysis 

by normal statistical process capability and control chart procedures. 

Findings: Results show that the proposed method is effective for tracking hidden effects in 

steadily drifting processes such as those associated with wear. After filtering, the data is found 

to fall within product specifications, though robust statistical control was still required through 

appropriate measures. 

Research Limitation: To investigate the intrinsic nature of the process outside of the process, 

material wear is assumed to be the sole source of the inherent drift. In processes where several 

sources of inherent drift are present, this may pose a problem. Additionally, the study focused 

on just one plant; however, data from other similar plants will be needed to buttress the findings 

and widen the scope of applicability of the findings. 

Practical implication:  The competitive pressures of today’s marketplace are increasingly 

forcing companies to place premium emphasis on product quality while aiming at the lowest 

costs possible. The study recommends continuous and sustained efforts to reduce variation in 

manufacturing processes to brighten firms’ competitive survival. 

Social implication: The study will bring new knowledge to metal product manufacturers that 

can help them deliver high-quality products and value for money to consumers.   

Originality / Value: New insights afforded by the study’s approach include revelations of 

otherwise hidden measurement errors as well as undersized finishing-die. Any other out-of-

control occurrences can then be more easily tracked and identified and root-cause analysis 

applied to eliminate them.  This is a practical study that seeks to develop an innovative way to 

monitor the quality of processes whose tracking is made difficult by inherent drift. The easy-

to-adopt methodology can be implemented by metal product manufacturers grappling with 

drift-inherent processes. 

 

Keywords: Continuously drifting. filtering approach. metal. process capability.  
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INTRODUCTION 

Process drift occurs in many manufacturing processes whereby process parameters deteriorate, 

adversely affecting quality. This study tests a method for analysing data from a naturally-

drifting process that involves filtering trends from data before applying appropriate tools to 

verify the state of statistical control and capability of the process. The secondary purpose is to 

investigate the intrinsic nature of the process outside of tool wear, which in this study is 

assumed to be the sole source of the inherent drift. Any other out-of-control occurrences can 

then be more easily tracked and identified and root-cause analysis applied to eliminate them. 

The physical foundation for this work is provided by data collected from a nail-wire drawing 

process. 

 

Nail Production 

Nails are a very crucial component in the building and furniture industries. They are 

predominantly wood fastening devices specified in terms of diameter and length as well as 

material. These specifications often determine the kinds and sizes of wood they can be used to 

fasten. Nails of small diameter are used for fastening woods that are softer in nature or thinner. 

The nail production process comprises two main stages: drawing the input material to the 

desired diameter, and then cutting it to appropriate lengths. Table 1 displays some standard nail 

diameters and their corresponding lengths.   

 
Table 1: Standard diameter ranges and corresponding length specifications of nails 

Diameter Range 

(mm) 

Nail Length 

 (in) (mm) 

6.0 – 6.4 6 152.4 

4.6 – 5.4 5 127 

3.6 – 4.5 4 101.6 

2.5 – 3.0 2.5 63.5 

2.0 – 2.4 2 50.8 

1.6 – 2.0 1.5 38.1 

1.0 – 1.4 1 25.4 

Source: Donyma Steel Complex (2021) 

 

Process Variation, Capability, and their Measurement 

Variation in manufacturing processes is undesirable, but scope always exists for reducing it a 

little more to improve product quality a little further. Statistical process control (SPC) is a tool 

that tracks process variability to detect the point where the process may begin to drift out of 

statistical control (Koppel & Chang, 2016; Aravind, Shunmugesh & Akhil, 2017). Process 

capability analysis (PCA) is an engineering decision-making tool in SPC applied within the 

normality of the process to assess its capability to meet defined specifications (Singh et al., 

2018). It can be used to quantify variability in areas such as vendor selection, specification of 

process requirements for new equipment, prediction of a process’s potential to hold tolerances, 

aid for assisting product designers in selecting or modifying a process, and in formulating 

quality improvement programmes (Saha & Majumder, 2016; Aravind et al., 2017). Process 

capability analysis, in turn, finds practical, quantitative expression in process capability indices 

(PCIs), used in representing the actual level of capability (White, 2021; Liu & Li, 2021). They 

are useful for analysing the capability and predicting the performance of a process by providing 

a numerical measure of the ability of the process to meet the requirements of customers 
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expressed in terms of product specification limits (Rao,  Albassam & Aslam, 2019; de-Felipe 

& Benedito, 2017; Selmi, 2018; Tomohiroa, 2020). 

 

Machine capabilities in the short term need to be known, and any indications of excessive 

variations eliminated so that the overall process can be maintained and even improved. As well, 

the environment of manufacturing will affect the capability of the process in the long term. For 

this reason, a short-term sampling plan cannot be used to predict the status of the process (its 

capability) in the long term (Chalisgaonkar & Kumar, 2014).  

 

Inherently Drifting Processes 

In normal process analysis, once the natural variation in the process has been ascertained and 

its statistical normality established, determining its natural capability is usually a 

straightforward matter. A problem arises, however, if this procedure is applied directly to 

processes inherently characterised by steady drift such as tool wear in metal drawing 

operations. This drift makes a direct application of statistical process control charting for 

product quality tricky and could introduce serious flaws depending on how it is handled. 

Worse, it could mask any underlying abnormal patterns in the data such as non-normality. Wire 

drawing, by its nature, falls in this category. If the capability of such a process is determined 

using standard procedures erroneous results may be obtained.  

 

In a drifting process the possible causal factors may be linked to one or more of the following: 

(a) raw material properties, (b) die metallurgy, (c) die geometry, (d) drawing-die speed/feed, 

and (f) the human factor dimension. And if these factors are monitored and controlled, one may 

be able to simply put a rule in place to change the dies after a certain number of parts are 

produced or hours elapsed after which an appropriate action is taken (Figure 1, QI Macros, 

2022). Even though this method can offer some solution to the steady-wear problem, it is not 

an ideal option for tackling other assignable causes unrelated to the steady drift. Once the trend 

line is known the nature of the wear is predictable. In this work we assume there are no steady 

drifts other than the one caused by progressive wear. 

 

Some of the existing methods for handling data from continuously drifting processes are based 

on the application of offsets after the process has drifted to a pre-defined limit. An example of 

such a process is depicted in Figure 1. An obvious deficiency of this method is that it may fail 

to reveal all possible hidden effects.  
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Figure 1. Unstable process showing machine drift (QI Macros, 2022) 

 

Other methods employ slanting control limits parallel to the inclined average line. However, 

beyond tracking drift these sloping limits are of little value in addressing any other out-of-

normal deviations that may be present in the process. Some recent works have focused on using 

direct succession and weak-order behavioural relationships to identify change points (Ostovar, 

Leemans & Rosa, 2018).  

 

Singh et al (2017), on their part, undertook a techno-economic and process capability analysis 

on investment-cast components using five different process routes to obtain values of process 

capability indices. Duro (2017) analysed process drift and shift simultaneously by computing 

the difference between each data point and the mean of the sample while computing the 

variance. He preserved the order of data to distinguish between shift and drift. Kumar, 

Ranjan, and  Singh, (2022) employed Taguchi orthogonal array to analyse dimensional 

accuracy as a process capability. Zheng, Wen and  Wang (2017) developed a model for 

detecting process drifts using event logs; Pawar, Bagga, and  Dubey (2021) investigated links 

between process capability and manufacturing rates, while Maaradji, Dumas, Rosa and Ostovar 

(2016) developed an automated online statistical model for detection of process drift. Their 

tests and observations led to a model for trade-offs between classification accuracy and drift 

detection delay. Yeshchenko, Ciccio, Mendling,  and Polyvyanyy (2022) explored the 

challenges of drift categorization and quantification in the concept of process mining. They 

proposed a novel technique (Visual Drift Detection) for managing process drifts which works 

by clustering declarative process constraints and applying change point detection on the 

identified clusters to detect drifts. 

 

In addition to the above methods, analytical approaches exist for handling data from 

continuously drifting processes. Refer, for example, to a method discussed in Doty (2009) in 

which periodic averages are plotted on the chart with sloping centreline and control limits. Any 

assignable causes are indicated by points plotting outside the slanting upper and lower control 

limits, respectively represented by: 
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y = (a + 3σ/√n) + bx 

y = (a - 3σ/√n) + bx 

 

where the constants a and b are determined from: 

 

                                      𝑎 = 
∑ 𝑦𝑖

𝑛
𝑖=1 −𝑏 ∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
           (i) 

  𝑏 = 
𝑛 ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 −∑ 𝑥𝑖∗∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
𝑖=1

𝑛 ∑ 𝑥𝑖
2𝑛

𝑖=1 −(∑ 𝑥𝑖
𝑛
𝑖=1 )2           (ii) 

 

The analyst looks to reduce the overall process variability, but the control will come from 

tracking variation at each setting. As the adjustment (driven by tool wear) is made, it needs to 

be established whether it is just the global mean shifting or it is the within-group standard 

deviation deteriorating as well. In many instances, it is both.   

 

Filtering the inherent trend would leave the remaining data subject only to random variations 

if indeed no further assignable causes are present; so that normal process capability tools can 

be used to evaluate the state of the process. This study presents and validates a method for 

handling such data that increases the likelihood of discovering possible assignable causes 

masked by the steady drift. Aside from rendering the use of Equations (i) and (ii) unnecessary 

its other merits include: 

1. The equation of the trend line can be easily obtained through simple regression using 

application software; the gradient element can then be filtered out to obtain horizontal 

control lines before plotting the adjusted data points. 

2. Identification and interpretation of patterns in the chart are made much easier since the 

control limits are now horizontal. 

 

RESEARCH METHODS 

The quality characteristic of interest in the study is drawn-nail diameter with desired 

specification limits between 3.6–4.5 mm inclusive.  The length of the nail is 4-inch (101.6 mm). 

In the study, two sets of diameter readings were taken from the production process, each over 

25 days and containing 125 data points from hourly readings taken five times a day through 

measuring callipers. Montgomery (2012) recommends a minimum of 100 observations in 

normal conditions for process capability study via histograms with sampling being done only 

when there is an indication that the process is in a reasonable degree of statistical control.  

 

Data collection was followed by verification of statistical normality using histograms and 

normal probability plots. This was to ensure that using standard analytical techniques would 

not invalidate inferences based on the data. Next, the data was conditioned to filter out tool 

wear as explained in section 1. Doing otherwise would mean the centreline of the control chart 

for averages could not be projected as horizontal but rather sloping or even curved if the wear 

is not steady. Steady wear, though, is assumed in this study. 

 

Two methods were considered for filtering the wear trend from the data (Browne,  1998). The 

first involves applying the principles of three-dimensional graphics to rotate the control and 

https://www.google.com.gh/search?tbo=p&tbm=bks&q=inauthor:%22Jimmie+Browne%22
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trend (data) lines about their respective intercepts so that they are horizontal. This in turn would 

rotate the plotted data points by the same angular measure. The required transformation is 

presented in Equation (1):  

 

{x'    y'    z'    1} = {x     y     z     1} T(α)R(α)             (1) 

 

where R(α), the rotation matrix, is given as 

 

 R(α) = [
cos𝛼 sin𝛼  1

−sin𝛼  cos𝛼 0
0 0 1

]                          (2)  

 

and the origin translation matrix found using: 

T(α) = [
1   0  0
0  1 0
0 − 𝑦 1

]                                     (3) 

Even though the equation of the trend line is known, the angle of rotation, α, required by this 

method could not be determined in a straightforward manner so the method was abandoned. 

 

The second approach, which is the one adopted in this work, involves subtracting the gradient 

portion of the trend line from each data point and then making up for the slight vertical shift 

caused by offsetting the horizontal axis at sample number 1 and not zero.  Data conditioning 

and analysis were done using Microsoft Excel with Sigma XL functionality.  

 

 RESULTS AND DISCUSSION 

The combined data  

Figure 2 displays a scatter plot of the combined data with the sequence preserved. As expected, 

there is an overall, upward trend in drawn-wire diameter over time due to the continuous 

wearing of the drawing dies. The slightly wider variation in the second data set is likely the 

result of a faster rate of deterioration of the tools.  

 



 
African Journal of Applied Research  

Vol. 8, No. 2 (2022), pp. 264-279 

http://www.ajaronline.com 

http://doi.org/10.26437/ajar.31.10.2022.18 

ISSN: 2408-7920  
Copyright ⓒ African Journal of Applied Research     
Arca Academic Publisher   

  270 

 

 
Figure 2: Scatter chart for the raw combined data  

 

The slightly higher-than-normal wear rate observed in the last five samples of each stream 

could have been caused by operators speeding up the process near the end of the work day. 

This could be corrected by tighter supervision if proven true by investigation.  

 

The very sharp jump in wear between the last observed data point in stream 1 and the first 

sample in stream 2 is likely due to a shift in a process set during the transition from month 1 to 

month 2.  Such change in setting could be caused, for example, by a higher drawing speed or 

a different material stock, the former being the more likely; or perhaps by the accumulation of 

metallurgical effects in the die material during the second month. 

 

Two tests of normality were performed on the combined data, yielding the normal probability 

plot of Fig. 3 and an Anderson-Darling (AD) P-Value of 0.00, which represents a failure value 

in the test (p < 0.05). Reviewing the plot, it is clear that the data imposes a curvature on the 

normal probability line, with some data even falling outside the 95% confidence interval. The 

combined data is therefore inherently non-normal. Trending in each data set is also clearly 

evident.  

 
Figure 3: Normal Probability Plot for raw combined data  
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No attempt was made to transform the data before finding the root causes for the outliers. The 

normal probability plot helps to distinguish the reasons for non-normality. Even with the 

outliers removed, the AD P-Value returned was 0.0215. A second normal probability plot 

produced a similar form to the first, with a significant amount of data still not lying on a straight 

line but instead on the boundaries of the 95% confidence curves. Trending was still present in 

the data and even though filtering raised the AD P-Value to 0.4502 the plot still retained strong 

indications of non-normality. 

 

Separating the two data streams 

As a consequence of the above results, each raw data stream was treated separately in a test for 

normality. The results are given in Table 2, along with those for the combined data. The first 

data set gave a sample mean and standard deviation of 3.686 mm and 0.0525 mm respectively. 

For the second set, these statistics are 4.099 mm and 0.094 mm. The AD P-Values are 0.8095 

and 0.2689 for data streams 1 and 2 respectively, but in both cases, the normal probability plots 

did not indicate normality. This was due to the outliers. Calculations such as Sigma Level, Pp, 

Cp, Ppk, and Cpk assume normality and will therefore be affected. The descriptive statistics 

report in table 2 completes the picture. 

 

Table 2: Results of Sigma XL Analysis of raw data sets 1& 2 and the combined raw data 

Descriptive Statistic Data set 1 Data set 2 Combined data 

Count 25 25 50 

Mean 3.686 4.099 3.892 

Sample Standard Deviation 0.052 0.094 0.222 

Range 0.200 0.360 0.720 

Minimum 3.600 3.960 3.600 

Maximum 3.800 4.320 4.320 

Anderson-Darling Normality Test: P-Value  0.8099 0.2689 0.000 

 

 Dropping the Outliers and Filtering out Wear 

 With outliers removed, the wear-laden equations for data streams 1 and 2, found by regression, 

are: 

y1 = 0.0061x + 3.60 
 

y2 = 0.0101x + 3.96 
 

Since the outliers are responsible for driving the non-normality in the part-to-part variation, we 

assume assignable causes can be found to justify their elimination. Consequently, we discard 

the last three data points from each stream; and after both wear and the outlying elements were 

removed a new normality test yielded the data in table 3, which, in conjunction with the normal 

probability plots of Figures 4 and 5, now confirm both data streams, especially stream 1, as 

normally distributed.  
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Table 3: Results of Sigma XL Analysis of filtered and cleaned data set 2 

Descriptive Statistic Data set 1 Data set 2 

Count 22 22 

Mean 3.609 3.971 

Sample Standard Deviation 0.00493 0.0132 

Minimum 3.600 3.960 

Maximum 3.800 4.320 

Anderson-Darling Normality Test: P-Value  0.2847 0.0841 

 

 
Figure 4: Normal probability plot for data stream 1 with wear and outliers removed  

In the probability plots, data points are seen to follow the normal probability straight line fairly 

well and fall within the 95% confidence curves. Put together, and recalling that few data are 

ever likely to fall in a perfectly straight line, these observations point to normality in the data. 

 

In equation form, the two transformed data sets are represented by: 

 

  Data set 1:  y'1 = (Data point - 0.006*x +0.006)               (4) 

        Data set 2:   y'2 = (Data point - 0.0099*x+0.0099)           (5)  

 

where y' is the wear-filtered diameter, and x the sample number.  

 

Since the data in Figure 5 fails the AD normality test but the bulk of it forms a straight line, it 

may be concluded that it is the outliers are still responsible for the non-normality. 
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Figure 5: Normal probability plot for data stream 2 with wear and outliers removed 

 

Control Charts 

An important assumption underlying the use of control charts and capability indices is that their 

usual interpretation is based on normally-distributed process output. Consequently, to ascertain 

the true state of the process outside of the expected drift, X-bar charts for nail diameter 

(indicating both the time-to-time variability and random errors of the process) were generated 

from each set of transformed data (Figures 6 and 7) as well as from the combined data (Figure 

8), for comparison. In addition to the +/-3 sigma limits both control charts also display +/-1 

sigma and +/-2 sigma lines to aid in viewing any patterns and special occurrences. The upper 

specification limit (USL) for the process is 4.5 mm (Table 1). 

 

From Figures 6, 7, and 8 it can be seen that pre-filtering the drift-laden data is effective since 

the control limits are horizontal and parallel, increasing the transparency and clarity of the plots 

and their ease of interpretation. Doty’s analytical method for handling drifting processes (2009) 

would have yielded slanting control limits. Further, the proposed method generates quicker 

responses and results than Zheng's et al., (2017) model for handling process drifts since no time 

is wasted in detecting, registering and processing event logs. We now turn to a detailed 

discussion of each data set.  

 

Data set 1 

From Figure 6 it is clear that there are no points that exceed the +/- 3 sigma limits on this chart, 

but we see some indication of slight instability in that some of the plotted points (from numbers 

6 to 10) exhibit non-random patterns of behaviour as described by Montgomery (2012). We 

also observe that following the sixth data point, 5 points in a row increase in magnitude or stay 

constant, i.e. a general run-up. Once again, no action is triggered since the run is less than 8 

points (Montgomery, 2012).  
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 Figure 6: X-bar control chart for drawn wire diameter (data set 1, wear filtered out) 

 

A run-down of similar length beginning with the 11th point is also observed, but the former run 

occurs on the same side of the centreline. We further note that 10 of the 22 points plot above 

the centre line, while 12 plot below it, which is a fairly even distribution.  Some authoritative 

sources, including Montgomery (2012) postulate that a run length of 8 points or more has a 

very low probability of occurrence in a random sample of points. Overall, therefore, there is a 

fair indication of statistical control.  
 

Beyond these observations we note that data set 1 is not as critical, seeing that its maximum 

value is well below the USL and, in fact, all data in set 1 fall below the centre line of the 

specification band. Much greater attention would thus be focused on data set 2, since set 1 has 

no serious capability issues (White, 2021; Liu & Li, 2021).  
 

Data set 2 

The picture for the second data stream (Figure 7) is slightly different from set 1, with one point 

exceeding the +/- 3 sigma limits, though falling within the specification limit.  
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Figure 7: X-bar control chart for drawn wire diameter (Data set 2, wear filtered out) 

 

In addition, the plotted sample averages appear to exhibit a somewhat cyclic behaviour. And 

since process capability analysis is applied within the normality of the process concerning 

defined specifications (Singh et al, 2018), a rigorous regime of performance requirements 

might necessitate an investigation into the normality of data set 2 even though, technically, it 

indicates statistical control.  Nevertheless, in some ways, data set 2 shares some common 

features with set 1 as it portrays a roughly even distribution of points above and below the 

centre line, an indication of randomness (Koppel & Chang, 2016), a mitigating factor. Again, 

there are no big issues but unlike data set 1, the points fall on both sides of the specifications 

centre line even though the run-up after the 16th data point is worth paying close attention to.  

 

Tests for special causes 

Regarding the presence of special causes, we observe that for stream 1 two out of the three 

points 2, 4 and 11 are more than 2 standard deviations from the centre line (same side), and 

observation number 12 is the 4th out of 5 points that exceed 1 standard deviation from the centre 

line (also on the same side). For stream 2, after observation points 12 and 22, 4 out of 5 points 

are more than 1 standard deviation from the centre line (same side) and for observation number 

22, 1 point plots more than 3 standard deviations from the centre line but these do not seem to 

be big issues.  

 

The Global process - combined data 

On a global scale (combined data) the overall picture (Figure 8) seems somewhat distorted, 

even after all the earlier corrections and transformations performed on the data. While the 

global process also does not seem out of control scope exists for improving its yield by 

eliminating or reducing the sources of local instability causing the observed non-random 

behaviour: the long general run-down after data point 5 is worth noting (Montgomery, 2012).  

  

While at the level of each data set there do not seem to be any discernible runs, on a global 

scale there appears to be at least one.  It is clear, therefore, that this distortion has to do with 
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differences in scale and the wear rates of the two data streams following the merger. It would 

be interesting to see how a method proposed by Duro (2017) could help address this. The 

justification and usefulness of analysing the two data sets separately from each other is thus 

confirmed, even though they form an integral part of the same phenomenon. The full report is 

laid out in numbers in table 4 (White et al, 2021). 

 

 
Figure 8: X-bar chart for drawn wire diameter: combined data with wear filtered out 

 
          Table 4. Process Capability Report: Wear Filtered  

Statistic Steam 1 Steam 1 

Count 22 22 

Mean 3.609 3.971 

StDev (Short Term, Long Term) 0.003208, 0.004927 0.007687, 0.01319 

USL 4.500 4.500 

Target 3.600 3.960 

LSL 3.600 3.960 

Ppl 0.62 0.28 

Ppk 0.62 0.28 

Cpm 0.00 0.00 

Cp 46.75 11.71 

Cpu 92.56 22.93 

Cpl 0.94 0.48 

Cpk 0.94 0.48 

ppm < LSL 32514.8 199146.4 

ppm Total 32514.8 199146.4 

% < LSL 3.25% 19.91% 

% Total 3.25% 19.91% 

 

Wear Management 

In the present work, it seems that the part-to-part variation (that variation that would still occur 

if the process did not drift) is very small compared with the variation coming from the drift. In 

addition, this variation is nearly negligible concerning the specifications, especially in the first 

data set. If the process were to possess no part-to-part variation at all one could let the wire 

diameter grow until it reached close to the USL and then he would effect the offset (i.e. tool 
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change in this context) to take the process back to the lowest dimension (QI Macros, 2022). In 

managing this drift, the most important index is the parts per million (ppm) or percent > USL. 

In this work, it is zero for both data streams.  

 

Differentiation 

Novelties in the present work include:  

a. It enables data from a one-sided process to be treated as though they are two-sided, with 

the potential to reveal useful and significant features, e.g. observations falling below 

the minimum die size.  

b. For such data, the Centre Line could be treated as a target if the external specification 

was two-sided. Then a point plotting 3-sigma above or below a control limit would not 

necessarily imply the process is out of control. 

c. The methodology helps to differentiate the two variations (the part-to-part and the 

expected trend) in an easy, more transparent, and insightful manner, thus aiding the 

analysis. 

d. By regimenting the analysis of otherwise non-normal global data, the Box-Cox 

transformation with its accompanying change of specification limits can be avoided if 

each regiment turns out normal, as it did in this work. 

e. Out-of-control occurrences outside of the trend have a far greater chance of being 

exposed for action. 

f. If the steady trend is not intrinsic, i.e. where the drift can be eliminated, the 

methodology provides us with a very effective means of tracking “behind-the-scenes” 

developments while offsets are being used to manage the drift temporarily until it is 

eliminated through the identification of assignable causes and taking action on them. 

 

CONCLUSION 

Owing to the nature of the nail manufacturing process where the wire is drawn through a series 

of dies, these dies are subject to progressive wear, resulting in a continuous upward drift in the 

mean diameter of the drawn wire.  If not treated specially, this natural (inherent) drift would 

interfere with the statistical analysis of data with the risk of clouding any out-of-normal patterns 

in the data that might hold important information about the process. Based on these 

considerations and the discussions in section 4.0, the following conclusions can be drawn:  

1. The process analysed in this study is in statistical control with the part-to-part variations 

small compared with the specification.   

2. Filtering out a natural trend from data does not preclude the possibility of other 

assignable patterns. In the particular case of this study, other trends (albeit, minor and 

probably unrelated to tool wear) were found present, and assignable causes were needed 

to address these patterns. 

3. The results of the study are somewhat self-validating: Any observations falling below 

the minimum diameter of 3.6 mm (Data set 1) could be due to inconsistencies in the 

size of the finishing die-opening or even measurement errors.  

4. Filtering natural trends from data gives satisfactory results and is thus appropriate for 

tracking continuously drifting processes both intrinsic and otherwise. 
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