
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

K-ANTITHETIC VARIATES IN MONTE CARLO
SIMULATION

ABDELAZIZ NASROALLAH

Abstract. Standard Monte Carlo simulation needs prohibitive time to
achieve reasonable estimations. for untractable integrals (i.e. multidimen-
sional integrals and/or intergals with complex integrand forms). Several
statistical technique, called variance reduction methods, are used to reduce
the simulation time. In this note, we propose a generalization of the well
known antithetic variate method. Principally we propose a K−antithetic
variate estimator (KAVE) based on the generation of K correlated uniform
variates. Some numerical examples are presented to show the improvenment
of our proposition.

1. Introduction

The approximation of integrals is one of the major class of prob-
lems that arise in statistical inference. There are a lot of situa-
tions that can be formulated as integration problems. Generally,
in statistic context, integration is associated with the Bayesian
approach [9].
Note that it is not always possible to derive explicit probabilistic
models and even less possible to analytically compute the esti-
mators associated with a given paradigm (maximum likelihood,
Bayes, method of moments, etc ..). Moreover, other statistical
methods, such as bootstrap methods [3], although unrelated to
the Bayesian approach, may involve the integration of the empiri-
cal cumulative distribution function (cdf). Similarly, alternatives
to standard likelihood, such as marginal likelihood in [1] for ex-
ample, may require the integration of the nuisance parameters.
Also, several optimization problems in statistical inference use
numerical integration steps, such as EM algorithm in [6] and [2].
Here we are concerned with simulation based integration methods
that uses the generation of random variables. Such methods are
generally known as Monte Carlo simulation methods.
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Basically, we interest to numerical approximation of untractable
integrals ( i.e. integrals in height dimensional case and/or with
complex integrand form). It is well known that a standard Monte
Carlo simulation of such integrals needs a prohibitive time to
achieve reasonable estimations.
To reduce the simulation time, there are many statistical tech-
niques, called variance reduction methods [8], [10], [5], [4], [9],
[11], [7]. The variance is linked to simulation time via the sample
size (the relation can be seen in confidence interval expression).
Our contribution, in numerical integration, is a generalization
form of the known antithetic variate estimator [4]. Principaly, we
propose a K−antithetic variate estimator, based on K negatively
correlated uniform variates. To generate such variates, the pro-
posed algorithm ,namely KAVE, uses normal vectors on IRK .
The improvement and efficiency of KAVE is tested on four nu-
merical examples.
The paper is organized as follows: in section two, we present the
standard Monte Carlo integration. In section three we present
the antithetic variate method. In section four, we present the
proposed estimator which generalizes the antithetic case, in the
same section we give a proof of the variance reduction carried
with respect to the standard case. We terminate the section by
giving our generation algorithm. Finally, in section five, we give
simulation results to confirm the improvement of our proposition.

2. Standard Monte Carlo integration

Let X be a real random variable with function density f(x)11[a,b](x),
(11A is the indicator function of set A). We denote expectation
and variance operators by IE[.] and V ar(.) respectively. We con-
sider an integrable function g with respect to the measure f(x)dx,
and we suppose that g is monotone. A presentation of standard
Monte Carlo integration is easily accomplished by looking at the
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generic problem of evaluating the integral

(1) θ = IE (g(X)) =

∫ b

a

g(x)f(x)dx.

It is natural to propose, using an independent and identically
distributed (i.i.d) sample (X1, . . . , Xn) generated from the density
f , the following empirical average to approximate θ:

θn =
1

n

n∑
i=1

g(Xi),

since θn converges almost surly to IE [g(X)] by the Strong Law of
Large Numbers. Moreover, the speed of convergence of θn can be
assessed. Construction of convergence test and confidence bounds
on the approximation of θ can be made.

Remarks 1. . − Standard Monte Carlo integration in the multi-
variate case can be accomplished in a similar way.
− The use of Monte Carlo method for approximating any quantity
on integral form is possible since the integral can be transformed
to an expectation of a random variable.
− For simplisity and without loss of generality, we interest to the
basic example θ =

∫ 1
0 g(x)f(x)dx, where f is a density function

of an absolute continuous real random X.

3. Standard antithetic variates

Although a standard Monte Carlo simulation lead to i.i.d sam-
ples, it may be preferable to generate samples from correlated
variables when estimating an integral, as they may reduce the
variance of the corresponding estimator.
A first setting where the generation of independent sample is less
desirable corresponds to the estimation of an integral θ written as
sum (resp. difference) of two quantities which are close in value:

let θ1 =
∫ 1

0 g1(x)f1(x)dx and θ2 =
∫ 1

0 g2(x)f2(x)dx such quan-
tities, and θ1n and θ2n are independent estimators of θ1 and θ2
respectively, the variance of θn = θ1n + θ2n (resp. θ1n − θ2n)
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is var(θ1n) + var(θ2n), which may be too large to support a fine
enough analysis on the sum (resp. difference). However, if θ1n and
θ2n are negatively (resp. positively) correlated, the variance is re-
duced by a factor +2cov(θ1n, θ2n) (resp. −2cov(θ1n, θ2n)), which
may greatly improve the analysis of the sum (resp. difference).
The philosophy of the antithetic variates algorithm, as generally
presented in the literature, is as follows:

θ =

∫ 1

0
g(x)dx =

1

2

∫ 1

0
g(x)dx +

1

2

∫ 1

0
g(1− x)dx.

If (U1, . . . , Un) is an i.i.d sample of uniform variables in [0, 1],
then a standard estimator of θ, related to the antithetic variates
is θav

n = θ1n + θ2n, where

θ1n =
1

2n

n∑
i=1

g(Ui) and θ2n =
1

2n

n∑
i=1

g(1− Ui).

We have

var(θav
n ) = var(θ1n) + var(θ2n)) + 2cov(θ1n, θ2n)

Since cov(Ui, 1−Ui) < 0, g is monotone and var(θ1n) = var(θ2n) =
1
4var(θn), then

var(θav
n ) < var(θn).

So the antithetic variates technique reduces the variance of the
standard estimator of θ.

Remark 1. . θav
n and θn are both unbiased and converge in proba-

bility to θ.

In the following section, we propose a generalization of the vari-
able antithetic method.

4. K-antithetic variates

Let n and K be positif integers and let Sn(K) := ∪n
i=1{U i

1, · · · , U i
K}

be a sample of nK uniform random on ]0, 1[ such that ∀i ∈
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{1, 2, . . . , n}, cov(U i
k, U

i
j) < 0 for j 6= k and cov(U i

k, U
l
j) = 0

for i 6= l. Now, for a fixed n, let (Sn(K))K∈IN∗ be the sequence of
samples defined by Sn(K + 1) = Sn(K) ∪ {U i

K+1, i = 1, . . . , n},
and consider the estimator θn(K) defined on the sample Sn(K)
by

(2) θn(K) =
1

nK

n∑
i=1

K∑
j=1

g(U i
j).

This estimator is a generalization form of the standard estimator

θav
n by writing θ in the form θ =

∫ 1
0 g(x)dx = 1

K

[∑K
k=1

∫ 1
0 g(x)dx

]
.

Proposition 4.1. For fixed n, we have

var(θn(K + 1)) ≤ var(θn(K)) , K = 1, 2, 3, . . .

Where K = 1 and K = 2 correspond to the standard Monte Carlo
and standard antithetic variates case respectively.

Proof
Let’s define a = var(g(U 1

1 )) and αK = 2
∑n

i=1
∑K

j=1 cov(g(U i
j), g(U i

K+1)).
By straightforward calculation, we obtain

var(θn(K)) =
a

nK
+

1

(nK)2

K−1∑
k=1

αk, K ≥ 2

Let’s note ∆Vn(K) = var(θn(K + 1))− var(θn(K)). We have

(nK(K +1))2∆Vn(K) = −nK(K +1)a+K2αK− (2K +1)
K−1∑
k=1

αk

Using the Schwarz’s inequality, we have |αk| ≤ 2nka. So

−2(K + 1) ≤ nK(K + 1)2∆Vn(K)

a
≤ 0 �

To simulate θn(K), we need to generate K correlated uniform
random variable. Such a procedure is based on the following
lemma.
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Lemma 4.2. Let Z1 and Z2 be two standard gaussian random
variables. Then

(3) cov (φ(Z1), φ(Z2)) =
1

2π
arcsin

(
cov(Z1, Z2)

2

)
,

where φ is the cdf of the standard gaussian law N(0, 1).

The proof of this lemma is given in annexe.

Now, for i = 1, · · · , n, let (X
(i)
1 , . . . , X

(i)
K ) be a gaussian random

vector NK(0, Σ(i)), where Σ(i) = (σ
(i)
kj )1≤k,j≤K is a covariance ma-

trix such that σ
(i)
kj < 0 for all 1 ≤ k 6= j ≤ K .

For 1 ≤ k ≤ K, Z
(i)
k :=

X
(i)
k

(σ(i)
kk )

1
2

is a standard gaussian variable

N(0, 1), for all i = 1, · · · , n.
Now, for each i = 1, · · · , n, applying the lemma 4.2 to each

(Z
(i)
k , Z

(i)
j ), 1 ≤ k, j ≤ K, we get a sample (φ(Z

(i)
1 ), . . . , φ(Z

(i)
K ))

of K negatively correlated uniform random.

4.1. K-Antithetic Variables Algorithm (KAVE). step 0 :
i = 0; θ = 0

step 1 : i := i + 1; give Σ(i) such that σ
(i)
kj < 0 for all 1 ≤ k 6=

j ≤ K

step 2 : generate a random vector (X
(i)
1 , . . . , X

(i)
K ) from NK(0, Σ(i))

and take

(U
(i)
1 , . . . , U

(i)
K ) := (φ(Z

(i)
1 ), . . . , φ(Z

(i)
K )), where Z

(i)
k =

X
(i)
k

(σ(i)
kk )1/2

step 3 : compute a =
∑K

k=1 g(U i
k)

step 4 : θ = θ + a, if i < n then goto step 1
step 5 : θn(K) = θ

nK is the estimator.

Remark 2. . the statistical table of N(0, 1) is used to get φ(.).

5. Numerical examples

In the present section, we present four numerical examples to
show the effectiveness of our algorithm. Since the number of arith-
metic operations and the number of generated random is different
from a situation to the other, we compare KAVE algorithm and
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standard Antithetic variables Algorithm using CPU time.
For each example, we give estimation accompanied, with standard
deviation estimation between brackets, for different CPU times
and different values of K. For each example the Monte Carlo
simulation result is summarized in a table. We denote tn(K) the
estimation of θn(K) where n is fixed by CPU time and sK the
standard deviation corresponding to tn(K). For all examples, we
consider K = 1, 2, 3, 5 and 7. The case K = 1 correspond to
the standard Monte Carlo simulation and K = 2 is similar to
the standard antithetic variates. Simulations are carried on a
Pinthium 4 computer.
In all these examples, KAVE works well and outperform the stan-
dard cases. It gives good estimations with reduced standard devi-
ation. Its performances increase with K for the same CPU time.
So the proposed generalization of the standard antithetic variates
method, KAVE, can be a competitive algorithm in Monte Carlo
integration context.
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Example 1 : θ =
∫ 1

0 du (the exact value is 0.5)

CPU tn(1)(s1) tn(2)(s2) tn(3)(s3) tn(5)(s5) tn(7)(s7)
8 0.5003(0.2889) 0.5000(0.2037) 0.5007(0.1661) 0.4999(0.1280) 0.5006(0.1081)
16 0.5005(0.2886) 0.5000(0.2046) 0.4999(0.1643) 0.4999(0.1276) 0.5005(0.1077)
24 0.4971(0.2882) 0.5000(0.2039) 0.5000(0.1661) 0.5004(0.1300) 0.5000(0.1077)

Table 1: estimation of θn(K) with it’s standard deviation between brackets

for different values of K and different CPU times.

Example 2 : θ =
∫ 1

0 log |0.5− y|dy (the exact value is θ =
−1.6931)

CPU tn(1)(s1) tn(2)(s2) tn(3)(s3) tn(5)(s5) tn(7)(s7)
8 -1.6952(1.0119) -1.6931(0.7056) -1.6996(0.5842) -1.6962(0.4401) -1.7016(0.3784)
16 -1.6901(0.9982) -1.6919(0.7080) -1.7018(0.5878) -1.7015(0.4500) -1.6928(0.3698)
24 -1.6957(1.0062) -1.6932(0.7165) -1.6837(0.5851) -1.6912(0.4511) -1.6953(0.3754)

Table 2 : estimation of θn(K) with it’s standard deviation between brackets

for different values of K and different CPU times.

Example 3 : θ =
∫ 1

0

∫ 1
0

∫ 1
0 u1u2u3du1du2du3 (the exact value is

θ = 0.125)

CPU tn(1)(s1) tn(2)(s2) tn(3)(s3) tn(5)(s5) tn(7)(s7)
30 0.1260(0.1479) 0.1250(0.0509) 0.1251(0.0266) 0.1249(0.0146) 0.1251(0.0132)
40 0.1241(0.1452) 0.1250(0.0509) 0.1257(0.0264) 0.1252(0.0135) 0.1291(0.0109)
50 0.1256(0.1473) 0.1250(0.0509) 0.1255(0.0293) 0.1270(0.0125) 0.1276(0.0056)

Table 3 : estimation of θn(K) with it’s standard deviation between brackets

for different values of K and different CPU times.

Example 4 : θ =
∫ 1

0

∫ 1
0

∫ 1
0

∫ 1
0

∫ 1
0 u1u2u3u4u5du1du2du3du4du5

(the exact value is θ = 0.0312)

CPU tn(1)(s1 × 10) tn(2)(s2 × 102) tn(3)(s3 × 102) tn(5)(s5 × 103) tn(7)(s7 × 103)
40 0.0314(0.56) 0.0313(0.98) 0.0314(0.39) 0.0313(0.71) 0.0319(0.45)
50 0.0315(0.57) 0.0313(0.99) 0.0311(0.31) 0.0312(1.22) 0.0308(0.54)
60 0.0313(0.56) 0.0313(0.98) 0.0313(0.35) 0.0314(0.97) 0.0311(0.36)

Table 4 : estimation of θn(K) with it’s standard deviation between brackets

for different values of K and different CPU times.
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variance. Thèse de Doctorat IRISA, Rennes.

[9] Robert C. P., Casella G. (1999)Monte Carlo Statistical Methods. Springer-Verlag, New
York.

[10] Rubinstein R. Y. (1981) Simulation and the Monte Carlo Method. John Wiley and Sons,
New York.

[11] Tuffin B. (1996) Variance Reductions Applied to Product-Form Multi-Class Networks;
Antithetic Variates and Low Discrepancy Sequences. Pub. Int. 1005 (Model), IRISA,
Rennes.

k-Antithetic Variates in Monte Carlo Simulation
Abdelaziz Nasroallah, pp.144-155

ISSN 0825-0305

Afrika Statistika www.jafristat.net 152



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Appendix A. Proof of lemma 4.2

Let X, Y and Z be three independent d-dimensional centered
gaussian vectors with covariance matrix Σ = (σij)1≤i,j≤d. The
proof need the following auxillary result:
If (X1, Y1), (X2, Y2) and (X3, Y3) are i.i.d gaussian couples, then
(X1, Y1) and (X2, Y3) are independent.
Now return to the proof of our principal lemma: we denote φi the
cdf of Xi, we interest to the computation of cov (φi(Xi), φj(Xj)) for i 6=
j.
Let

αij = IE [φi(Xi)φj(Xj)]

we have,

αij =

∫ ∫
φi(s)φj(t)dHXiXj

(s, t),

where HXiXj
(s, t) is the cdf of (Xi, Xj).

Now Xi, Yi and Zj are identically distributed for i, j = 1, . . . , d.
So

αij =

∫ ∫
IP (Yi < s)IP (Zj < t)dHXiXj

(s, t).

Since Y and Z are independent, one can easily proof that Yi and
Zj for i 6= j are independent. So

αij =

∫ ∫
IP (Yi < s,Zj < t)dHXiXj

(s, t).

Now by the above auxiliary result, we get

αij =

∫ ∫
IP (Yi < x,Zj < y/Xi = x, Xj = y)dHXiXj

(x, y)

= IP (Yi < Xi, Zj < Xj) .

Let V = X − Y and W = X − Z, one can easily verify that
(Vi, Wj) is N2(0, Σ

(ij)), where

Σ(ij) =

(
2σii

√
σiiσjjρij√

σiiσjjρij 2σjj

)
and ρij = cov(Xi, Xj).

So
αij = P (Vi > 0, Wj > 0).
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Now, let A and B be two independent and centered gaussian ran-
dom variables with the same variance 1, then the vector (A, B) is N2(0, I2).
Let

N =

 √
2σii

√
1− ρ2

ij

4

√
σii

2 ρij

0
√

2σjj

 .

We have NN ′ = Σ(ij), where prime stand for transpose. It is easy
to see that (Vi, Wj) and N(A, B)′ have the same law. So

αij = IP

√
2σii

√
1−

ρ2
ij

4
A +

√
σii

ρij√
2
B > 0 ,

√
2σjjB > 0


= IP

√
1−

ρ2
ij

4
A +

ρij

2
B > 0 , B > 0

 .

Now consider the transformation T given by
T : (A, B) → (R cos (Θ) , R sin (Θ)), where R =

√
A2 + B2 and

Θ is uniform on [0, 2π]. Using this transformation, we get
So

αij = IP

√
1−

ρ2
ij

4
R cos(Θ) +

ρij

2
R sin(Θ) > 0 , R sin(Θ) > 0

 .

Since R > 0, then

αij = IP

√
1−

ρ2
ij

4
cos(Θ) +

ρij

2
sin(Θ) > 0 , sin(Θ) > 0


= IP

(
cos

[
arcsin

(ρij

2

)
−Θ

]
> 0 , sin(Θ) > 0

)
= IP

(
Θ ∈

]
arcsin

(ρij

2

)
− π

2
, arcsin(

ρij

2
) +

π

2

[
∩ ]0, π[

)
= IP

(
Θ ∈

]
0, arcsin

(ρij

2

)
+

π

2

[)
.
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Since Θ is uniform in [0, 2π], then

αij =
arcsin(

ρij

2 ) + π
2

2π
.

Finally, since φi(Xi) i = 1, 2, . . . , d are uniform, then

cov (φi(Xi), φj(Xj)) = αij −
1

4
=

arcsin(
ρij

2 )

2π
.
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