
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

On optimality of the empirical distribution
function for the estimation of the invariant
distribution function of a diffusion process ∗

Ilia Negri†

Abstract

In this work we present some results on the optimality of the em-
pirical distribution function as estimator of the invariant distribution
function of an ergodic diffusion process. The results presented were ob-
tained in different previous works under conditions that are are rewritten
in a unified form that make comparable those results. It is well known
that the empirical distribution function is an unbiased and uniformly
consistent estimator for the invariant distribution function of an ergodic
diffusion process. It is also an efficient estimator in the sense that the
risk of this estimator attains an asymptotic minimax lower bound. In
this paper we review some results on the problem of the efficiency of
the empirical distribution function considering three types of risk func-
tion. The first one is in a semi-parametric set-up. The second one is the
integrated mean square error and the third is based on the sup norm.
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1 Introduction

In this paper we review some results on the optimality, in a minimax sense,

of the empirical distribution function as estimator of the invariant distribu-

tion function F (x), x ∈ R by the continuous observation of a diffusion process

{Xt : 0 ≤ t ≤ T}. Let Xt, t ≥ 0, be an ergodic diffusion process with invariant

measure µ and F (x) = µ{(−∞, x]}. The empirical distribution function, de-

noted by F̂T (x), x ∈ R, is a natural estimator for F (x). It is well known that

the empirical distribution function is an unbiased and uniformly consistent

estimator, by the Glivenko–Cantelli theorem, for the invariant distribution

function of an ergodic diffusion process. It is also an efficient estimator in

the sense that the risk of this estimator attains an asymptotic minimax lower

bound. In this paper we review some results on the problem of the efficiency

of the empirical distribution function considering three type of risk functions.

The first one is in a semi-parametric set-up. The second one is the integrated

mean square error and the third is based on the sup norm. These results where

obtained in previous works (Kutoyants, 1997, Kutoyants and Negri, 2002 and

Negri 1998) under different conditions. Here we have rewritten the conditions

in a form that they are comparable. In this way we can see how changing

the definition of risk, also the conditions have to be strong in some natural

directions. For example passing from the risk defined when the estimation is

in one fixed point to the risk based on the sup norm, the required conditions

involve the supremum over every x ∈ R. In a similar way, when the integrated

mean square error risk is considered, the required conditions involve integral

of the same type as in the definition of the risk. Synthetically in the sup norm

we need conditions that assure the weakly uniform convergence of the empir-

ical process. To prove the asymptotically efficiency for the integrated mean

square error the conditions needed are less restrictive, essentially because, we

On Optimality of the Empirical Distribution Function for the 
Estimation of the Invariant Distribution function of a diffusion process 
Ilia Negri, pp. 83-104

ISSN 0825-0305

Afrika Statistika www.jafristat.net 84



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

do not need the weak convergence of the empirical process to reach the lower

bound. To prove the asymptotic efficiency, the procedure is the same in the

three different set-up. First it is derived a local asymptotic minimax lower

bound for the risk of any estimator of the invariant distribution function, then

the efficient estimator is defined as the estimator that attains the lower bound,

and finally it is showed that the empirical distribution function attains that

bound.

In the next section we present the statement of the problem and the as-

sumptions. In section 3, we present the statistical problem and the conditions

used through the text. In section 4, we present the principal properties of

the empirical distribution function. Section 5 is divided in three sub-sections

where in each of them we present an asymptotic minimax bound for three

different risk function. Finally in the conclusive section 6, we give an example.

2 Preliminaries

In this section we introduce the model and his principal properties. Let us

consider a one dimensional diffusion process

dXt = S(Xt)dt + σ(Xt)dWt, X0, t ≥ 0, (1)

where {Wt : t ≥ 0} is a standard Wiener process, and the initial value X0 is

independent of Wt, t ≥ 0. Let us introduce some conditions on the pair (S, σ).

Condition A1. The function S is locally bounded, the function σ2 is

positive and continuous and for some A > 0 the condition

xS(x) + σ(x)2 ≤ A(1 + x2), x ∈ R

holds.

If condition A1 holds, the equation (1) has an unique weak solution (see for

example Kutoyants, 2004 p. 27). Note that every condition that assures the
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existence of a weak solution can be assumed instead of A1. Although a strong

solution of (1) is not required, conditions that assure such kind of solution are

sometimes required for simplicity. For example in Kutoyants and Negri (2002),

the Lipschitz conditions were required on the coefficient S and σ.

Condition A2. The functions S and σ are such that:

VS(x) =

∫ x

0

exp

{
2

∫ y

0

S(v)

σ(v)2
dv

}
dy → ±∞, as x → ±∞ (2)

and

G(S) =

∫ +∞

−∞

1

σ(x)2
exp

{
2

∫ x

0

S(v)

σ(v)2
dv

}
dx < +∞. (3)

If condition A2 is satisfied then the weak solution of (1), Xt, t ≥ 0, has the

ergodic property (see for example Gikhman and Skorohod, 1972 or Durret,

1996), that is, there exists an invariant probability measure µ such that for

every measurable function g such that E|g(ξ)| < ∞, where ξ has the invariant

measure as distribution, and E denote the mathematical expectation with

respect the invariant measure, we have, with probability one,

lim
T→∞

1

T

∫ T

0

g(Xt)dt =

∫
R

g(z)f(z)dz

where f is the invariant density of the invariant measure µ given by

f(y) =
1

G(S)σ(y)2
exp

{
2

∫ y

0

S(v)

σ(v)2
dv

}
.

The invariant distribution function is given by

F (x) =

∫ x

−∞

1

G(S)σ(y)2
exp

{
2

∫ y

0

S(v)

σ(v)2
dv

}
dy. (4)

From now on we suppose that the initial value X0 has the invariant distribu-

tion, so the process (1) is strictly stationary.

Suppose we observe different diffusion processes {Xt : 0 ≤ t ≤ T} given

by equation (1) with drift coefficients respectively given by S1, S2 and S0 = 0
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and initial value respectively X1
0 , X2

0 and X0
0 . Let us introduce the following

condition.

A3. The functions S1, S2 and σ satisfy condition A1 and the densities

(with respect to the Lebesgue measure) of the corresponding initial values X1
0 ,

X2
0 and X0

0 have the same support (if the initial value is nonrandom, then we

suppose that it takes the same value for all processes).

Let CT be the space of all the continuous functions on [0, T ] endowed with

the uniform metric and let B(CT ) be the Borel σ-algebra in this space. More-

over let P T
S be the measures induced by the processes {Xt : 0 ≤ t ≤ T} given

by equation (1) for different S in the space CT . If condition A3 holds, all the

measures P T
S are equivalent and the corresponding Radon-Nikodym derivative

or likelihood ratio,

L(S, S1, X
T ) =

dP T
S

dP T
S1

(XT )

is given by

L(S, S1, X
T ) =

G(S1)

G(S)
exp

{
2

∫ X0

0

S(v)− S1(v)

σ(v)2
dv +

∫ T

0

S(Xt)− S1(Xt)

σ(Xt)2
dXt

}
·

· exp

{
−1

2

∫ T

0

S(Xt)
2 − S1(Xt)

2

σ(Xt)2
dt

}
.

Let us denote by ET
S the mathematical expectation with respect to the

measure P T
S . Here and in the sequel we use a subscript S (for example we

denote with fS and FS the invariant density and the invariant distribution

function respectively) to emphasize the dependence on the unknown function

S of a certain quantity. So we denote by ES the mathematical expectation

with respect to the invariant density depending on different S.
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3 Statement of the statistical problem and con-

ditions

Given the diffusion process

dXt = S(Xt)dt + σ(Xt)dWt, t ≥ 0, X0,

we suppose that conditions A1 and A2 are satisfied, and that X0 has the invari-

ant distribution, so the process Xt, t ≥ 0 is ergodic and is strictly stationary.

We are interested in the estimation of the invariant distribution function

FS(x) =

∫ x

−∞

1

G(S)

1

σ(y)2
exp

{
2

∫ y

0

S(v)

σ(v)2
dv

}
dy (5)

by the full continuous observation XT = {Xt : 0 ≤ t ≤ T} solution of (1) when

σ is known and S is unknown. The fact that σ is supposed known, it is not

a limitation. Indeed it is known that the measure induced on CT endowed by

the Borel σ-algebra, by diffusion processes with different diffusion coefficients

are singular, so the statistical inference can be trivial. For a fixed function σ

let us introduce the classes

Sσ = {S : conditions A1,A2,A3 are fulfilled}

and S∗σ ⊂ Sσ such that for every S∗ in S∗σ, there exists a δ > 0, and a vicinity

Vδ =

{
S : sup

x∈R
|S∗(x)− S(x)| < δ, S ∈ S∗σ

}
,

such that

sup
S∈Vδ

G(S) < +∞.

This means that for every function S ∈ S∗σ, there exists a vicinity of functions

in this class for which the solution of the corresponding stochastic differential

equation has the ergodic property with invariant distribution function given

by (5). See Kutoyants, 2004 p. 311 for an example of such set. For x and y in

On Optimality of the Empirical Distribution Function for the 
Estimation of the Invariant Distribution function of a diffusion process 
Ilia Negri, pp. 83-104

ISSN 0825-0305

Afrika Statistika www.jafristat.net 88



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

R, we denote by x ∧ y and by x ∨ y the minimum and the maximum of x and

y respectively.

Let us introduce some functions and some conditions on them that will be

used trough the sequel in the text. We define

RS(x, y) = 4

∫ +∞

−∞

FS(v ∧ x)
(
1− FS(v ∨ x)

)
FS(v ∧ y)

(
1− FS(v ∨ y)

)
σ(v)2fS(v)

dv (6)

and

Hx,S(y) = 2

∫ y

0

FS(v ∧ x)− FS(v)FS(x)

σ(v)2fS(v)
dv. (7)

Note that when y = x the function RS defined by equation (6) can be rewritten

as

RS(x, x) = 4ES

(
FS(ξ ∧ x)− FS(x)FS(ξ)

σ(ξ)fS(ξ)

)2

. (8)

Let ν be a finite measure on R. The quantity ρ∗(S) is defined as

ρ∗(S) =

∫
R

4ES

(
FS(x ∧ ξ)(1− FS(x ∨ ξ)

σ(ξ)fS(ξ)

)2

ν(dx) =

∫
R

RS(x, x)ν(dx)

Condition Q1. The function S∗ ∈ S∗σ and for some δ > 0

sup
S∈Vδ

ρ∗(S) = sup
S∈Vδ

∫
R

4ES

(
FS(x)FS(ξ)− FS(ξ ∧ x)

σ(ξ)fS(ξ)

)2

ν(dx) < +∞. (9)

Condition Q2. The function S∗ ∈ S∗σ and for some δ > 0

sup
S∈Vδ

∫
R
ESHx,S(ξ)2ν(dx) < +∞.

Condition S1. The function S∗ ∈ S∗σ and for some δ > 0

sup
S∈Vδ

sup
x∈R

ES

(
FS(ξ ∧ x)

(
1− FS(ξ ∨ x)

)
σ(ξ)fS(ξ)

)2

< +∞ (10)

Condition S2. The function S∗ ∈ S∗σ and for some δ > 0

sup
S∈Vδ

sup
x∈R

ESHx,S(ξ)2 < +∞.
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Moreover let us introduce the following conditions

Condition S3. Let R > 0. The function S∗ ∈ S∗σ and for some δ > 0, for

x, y ∈ [−R,R]

sup
S∈Vδ

ES|Hx,S(ξ)−Hy,S(ξ)|2 < P (R)|x− y|2

where P (R) is a polynomial function depending only on R.

For x > L > 0

sup
S∈Vδ

ES|Hx,S(ξ)|2 ≤ Ce−α|x|

where C > 0 and α > 0 are constant.

Condition U1. With probability 1 the convergence

lim
T→+∞

4

T

∫ T

0

(
FS(Xt ∧ x)− FS(x)FS(Xt)

σ(Xt)fS(Xt)

)2

dt = RS(x, x)

is uniformly on S ∈ Vδ.

Let F̄T (x) be any estimator of FS(x), x ∈ R. If x is fixed the risk associated

at any estimator can be defined as

ρp
T (F̄T , FS) = ET

S

(
`
(√

T (F̄T (x∗)− FS(x∗))
))

where ` ∈ Wp is a loss function with the usual properties having a polynomial

majorant of order p. If we are interested in the risk defined with loss functions

that involve the estimation procedure in all the points x where F is defined

we can introduce other types of risk function. More precisely here we consider

two types of global risk functions. We define the integrated mean square error

as

ρL2

T (F̄T , FS) = TET
S

∫
R
|F̄T (x)− FS(x)|2ν(dx)

where ν is a finite measure on R. The second type of global risk considered

is the risk based on the sup norm. Let us consider C0(R) the space of all

the continuous function ϕ : R → R vanishing at infinity, endowed with the
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sup norm ||ϕ|| = supx∈R |ϕ(x)|. We denote by B0 the corresponding Borel σ-

algebra. Let us introduce the following loss function `(ϕ) = g
(
supx∈R |ϕ(x)|

)
with ϕ ∈ C0(R) where g : [0, +∞) → R is non negative, non decreasing and

g(0) = 0. The function ` is a sub-convex function. For any estimators F̄T (x)

and for a fixed S the risk is defined as

ρsup
T (F̄T , FS) = ET

S

(
g(sup

x∈R

√
T |F̄T (x)− FS(x)|)

)
.

A natural estimator of FS(x) is the empirical distribution function (EDF)

defined as follows

F̂T (x) =
1

T

∫ T

0

χ(−∞,x](Xt)dt, (11)

where χA is the indicator function of a measurable set A. This estimator

satisfies all the nice conditions of the first order asymptotic statistics, that are

uniform consistency, asymptotic normality and asymptotic efficiency as we will

show in the next sections.

4 Empirical distribution function

The empirical distribution function (11) is a natural estimator of the invariant

distribution function because, in virtue of the strong law of large numbers, we

have that for every x ∈ R the relation

1

T

∫ T

0

χ
(−∞,x]

(
Xt

)
dt →

∫
R

χ
(−∞,x]

(y) dF (y) = F (x)

holds with probability one.

This estimator is uniformly consistent with respect to x ∈ R by the Glivenko–

Cantelli theorem (see Kutoyants, 1997).

On (C0(R),B0), we define the Gaussian process

ηS = {ηS(x), x ∈ R}
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with mean 0 for every x ∈ R and with covariance function RS(x, y). We denote

by PS the law on (C0(R),B0) of the process ηS. For a fixed S, consider the

empirical process {ηS
T (x), x ∈ R} where

ηS
T (x) =

√
T
(
F̂T (x)− FS(x)

)
=

1√
T

∫ T

0

(
χ

(−∞,x]
(Xt)− FS(x)

)
dt. (12)

We are interested in the weak convergence of the empirical process.

The uniform weak convergence of the empirical process to the Gaussian

process ηS uniformly with respect to S ∈ Vδ was proved in Negri, (1998). The

result is the following.

Theorem 1. Let conditions S1, S2, S3 and U1 hold. Then the empirical process

{ηS
T (x), x ∈ R}, weakly converges to the process {ηS(x), x ∈ R} uniformly on

Vδ.

Ccondition S1 assures the weak convergence of finite dimensional laws.

Conditions S2 and S3 are used to prove the tightness of the family of processes.

Condition U1 assures the uniformity of the result. The convergence of ηS
T (x)

to ηS(x) for a fixed x was proved in Kutoyants, (1995). See also Kutoyants,

(2004). To prove the convergence of ηT (x) =
√

T (F̂T (x)) − FS(x)) to ηS =

{ηS(x) : x ∈ R} for a fixed S, all the conditions can be relaxed avoiding to

require uniformity with respect to S ∈ Vδ.

Regarding the weak convergence of the empirical process ηS
T , for a fixed S,

Van der Vaart and Van Zanten, (2005) have established the following general

result. The process ηS
T weak converges to the process ηS in `∞(J) for every

compact J ⊂ R if and only if
∫

R F 2
S(1 − FS)2dp < ∞, where p is the scale

function of the diffusion. Here `∞(J) denotes the space of the continuous

functions g : J → R endowed with the sup norm. Moreover we have the

convergence in `∞(R) if and only if the limit process ηS lies in C0(R). The
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condition on
∫

R F 2
S(1− FS)2dp is equivalent to the existence of the covariance

function of the process ηS, that is supx RS(x, x) < ∞. Their result is based on

the relation 1
t
supx∈I lXt (x) = OP(1), where lXt denote the diffusion local time

of the diffusion X. See also Van Zanten, 2003.

5 Asymptotic efficiency of the empirical dis-

tribution function

In this section we review some results on the efficiency of the empirical dis-

tribution function as estimator of the invariant distribution function when

the efficiency is evaluated with respect to different risk functions. The EDF is

asymptotically efficient in a minimax sense. That is, first an asymptotical min-

imax lower bound for the risk of all the estimators is founded, then an efficient

estimator is defined as the estimator whose risk is equal to the asymptotical

lower bound and finally it is shown that the empirical distribution function

attains this bound.

5.1 An asymptotic global bound in a semiparametric
set-up

For the problem of the estimation of FS(x∗) in a fixed x∗ let us consider the

risk defined as

ρp
T (F̄T , FS) = ET

S

(
`
(√

T (F̄T (x∗)− FS(x∗))
))

where ` ∈ Wp is a loss function with the usual propertie of having a polynomial

majorant of order p. Kutoyants, (1997) has proved the following result.

Theorem 2. Let S∗ ∈ S∗σ and RS(x∗, x∗) < +∞. Then for any loss function

` ∈ Wp
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lim
δ→0

lim
T→∞

inf
F̄T

sup
S∈Vδ

ET
S

(
`
(√

T (F̄T (x∗)− FS(x∗))
))

≥ E`
(
ζRS∗(x

∗, x∗)−1/2
)

where ζ ∼ N (0, 1)

Moreover suppose that condition U1 is satisfied and the following conditions

hold for some p∗ ≥ 2

sup
S∈Vδ

4ES

(
FS(x∗)FS(ξ)− FS(ξ ∧ x∗)

σ(ξ)fS(ξ)

)p∗

< +∞ sup
S∈Vδ

ES|Hx∗,S(ξ)|p∗ < +∞;

(13)

Then F̂T (x∗) is asymptotically efficient for loss functions ` ∈ Wp for every

p < p∗, provided that RS(x∗, x∗) is continuous in S∗. See also Kutoyants,

(2004). The proof is essentially bases on the construction of a parametric

vicinity of the non parametric model given by the fixed S∗. In this sense the

problem is called semi-parametric. The asymptotically minimax risk bound

by the Hájek-Le Cam inequality follows from the local asymptotic normality

(LAN) property of the parametric model. Note that the conditions (13) re-

quired to prove the efficiency of the EDF are essentially conditions S1 and S2

without asking the supremum with respect to x and for p∗ = 2.

5.2 An asymptotic global bound based on the integrated
mean square error

A natural extension of the work of Kutoyants was to try to extend the efficiency

of the empirical distribution function in a global sense. Suppose that instead

in one fixed point you are interested in the risk of the estimator in all the

points where the invariant distribution function is defined. This statement of

the problem can be called nonparametric (see Bikel et al., 1993 and van der

Vaart, 1995) because, not only the underlying model is a nonparametric one
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(due to the fact the drift coefficient is supposed to be an unknown function) but

also because, in the risk considered here, we measure the difference between the

estimator and the true value F in all the points where they are defined. For the

risk defined as the integrated mean square error and the model of independent

and identical distributed random variables such a result has been established

earlier by Levit (1978) and Millar (1979), using the theory of local asymptotic

normality. Gill and Levit (1995), obtained the same result using a different

approach based on a multidimensional version of the van Trees inequality.

The empirical distribution function achieves a local asymptotic minimax

lower bound for the integrated mean square error of an arbitrary estimator.

Theorem 3. Let S∗ ∈ S∗σ and condition Q1 be fulfilled. Then

lim
δ→0

lim
T→∞

inf
F̄T

sup
S∈Vδ

ρL2
T (F̄T , FS) ≥ ρ∗(S

∗) (14)

where the inf is taken over any estimator F̄T of FS.

The argument used in Kutoyants and Negri (2002) to prove this result is

essentially based on the reduction of the problem to a semiparametric one. It is

considered a nonparametric vicinity of a fixed model and then it is constructed

a parametric family of ergodic processes that belongs to this nonparametric

vicinity. But instead of the Hájek-Le Cam inequality, as in Kutoyants (1998),

the multidimensional van Trees inequality (see Gill and Levit, 1995) is applied

to this parametric model and the lower bound is obtained. This technique

has also been used by Iacus (1998) for the problem of state estimation of a

diffusion process with small dispersion and can be applied in the same manner

in the stationary density estimation problem. Let us introduce the following

Definition 1. Let condition Q1 be fulfilled. Then an estimator F̂T is called

asymptotically efficient if for every S∗ ∈ S∗σ we have

lim
δ→0

lim
T→∞

sup
S∈Vδ

ρL2
T (F̂T , FS) = ρ∗(S

∗)
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The efficiency of the EDF is given by the following result.

Theorem 4. Let conditions Q1, Q2 and U1 hold and ρ∗(S) be continuous in

the uniform topology at the point S∗, then the empirical distribution function

is asymptotically efficient.

The proof is given in Kutoyants and Negri (2002). Note that conditions

Q1 and Q2 are the integrated version with respect the measure ν of conditions

(13) with p∗ = 2.

5.3 An asymptotic global bound with the risk based on
the sup norm

For this last kind of risk the problem of asymptotic efficiency of the empirical

distribution function was already studied for many models. Dvoretsky, Kiefer

and Wolfowitz (1956) have shown that the EDF is asymptotically minimax

in the case of independent and identically distributed observations. See also

the works of Koshevnik and Levit (1976) and Millar (1983) and the references

therein for further generalizations on this model. For the model of dependent

observations Penev (1991) has shown that the EDF is efficient in the problem

of the invariant distribution estimation for an exponentially ergodic Markov

chain when the state space is [0, 1]. A more general case can be found in

Greenwood and Wefelmeyer (1995). Further references for the same kind of

problem for other models can be found in Negri (1998).

In this context, where the risk function is based on the sup norm, we are

not able to reduce our model to a parametric one, and so we cannot apply

the same technique used when the risk is the integrated mean square error

to find a lower minimax bound. However also, in this context, the empirical

distribution function is efficient; but to prove it we have to follow a different

approach. We can state the result for the asymptotic lower bound for the
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risk based on the sup norm of all the estimators. This result is a little bit

different from the one in Negri (1998) because here we give the theorem under

the introduced conditions, so we give also the proof.

Theorem 5. Let S∗ ∈ S∗σ and condition S1 be fulfilled. Then

lim
δ→0

lim
T→+∞

inf
F̃T

sup
S∈Vδ

ET
S

(
g(sup

x∈R

√
T |F̄T (x)− FS(x)|)

)
≥
∫

`(w)P∗(dw)

where P∗ is the law of the process {ηS∗(x), x ∈ R}

Proof. First of all the perturbated model has to be constructed in a non para-

metric way. Let us consider the Hilbert space

H =

{
H : ‖H‖2

H :=

∫
R

H(x)2fS∗(x)dx < +∞
}

,

and the subspaces of H

Hm =
{
H ∈ H : sup

x∈R
|H(x)| ≤ m, Supp H ⊆ [−m,m], H ∈ C1(R)

}
.

We can prove (see Negri, 1998) that the space H0 :=
⋃+∞

m=1Hm is dense in H.

We define the perturbed model by means of the function of these subspaces

SH(x) = S∗(x) +
1√
T

H(x)σ(x), H ∈ Hm.

We suppose that the observation is given by the process

dXH
t = SH(XH

t )dt + σ(XH
t )dWt XH

0 0 ≤ t ≤ T,

Let FH(x) be the distribution function of the perturbated model. Consider

the following sequence of experiments

ET =
{
P T

H , H ∈ Hm

}
where the P T

H is the distribution of the solution of the perturbated model.

They converge (see Negri, 1998) to the following experiment

E =
{
PH , H ∈ Hm

}
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with
dPH

dP0

= exp

{
LH − 1

2
‖H‖2

}
,

where LH is N (0, ‖H‖2) and (LH1 , . . . , LHk
) is N (0, Σ), Σi,j = 〈Hi, Hj〉. It

turns out that the experiment E is the Gaussian shift experiment of an appro-

priate Wiener space. To prove this fact, we follow the same approach given in

Millar (1983) were it was applied to the problem of the efficiency of the em-

pirical distribution function for the case of i.i.d observations. Let us introduce

in H the linear operator

τH(x) =

+∞∫
−∞

2H(v)
F (x ∧ v)

(
F (x ∨ v)− 1

)
σ(v)

dv

It can be proved that τ satisfies the following conditions: τH(x) is well defined

for every H ∈ H, it is continuous, the image is such that τH ∈ C0(R) and τH

is dense in C0(R). Moreover we can prove that if H ∈ Hm for some m, then

for T → +∞, we have

√
T
(
FH(x)− F (x)

)
= τH(x) + oP (1).

Let Q be the Gaussian canonical cylindric measure on H (see Millar, 1983),

then the image of Q under τ is P∗. All this allows us to say that
(
τ,H, C0(R)

)
is

a Wiener space and its Gaussian shift experiment is exactly E =
{
PH , H ∈ H

}
.

Now we can write

sup
S∈Vδ

ET
S

(
g(sup

x∈R

√
T |F̄T (x)− FS(x)|)

)
≥ sup

H∈H

∫
C([0,T ])

`
(√

T (F̃T − FH)
)

dP T
H

and, denoting with F̃ ′
T an appropriate procedure (a generalization of the
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concept of estimator, see Millar, 1983) we have the following inequalities

inf
F̃T

sup
H∈H

∫
C([0,T ])

`
(√

T (F̃T − FH)
)

dP T
H

≥ inf
F̃T

sup
H∈Hm

∫
C([0,T ])

`
(√

T (F̃T − FH)
)

dP T
H

= inf
F̃ ′

T

sup
H∈Hm

∫
C([0,T ])

`
(
F̃ ′

T − τH
)

dP T
H

= inf
F̃T

sup
H∈Hm

∫
C([0,T ])

`
(
F̃ ′

T − τH
)

dP T
H

≥ inf
b∈K

sup
H∈Hm

∫
C([0,T ])

∫
C0(R)

`(y−τH)b(w, dy)P T
H(dw)

By the Hajek–Le Cam theorem we have

lim
T→+∞

inf
F̃T

sup
H∈Hm

∫
C([0,T ])

`
(√

T (F̃T−FH)
)

dP T
H

≥ inf
b∈K

sup
H∈Hm

∫
C0(R)

∫
C0(R)

`(y−τH)b(w, dy)PH(dw)

= inf
b∈K

sup
H∈Hm

ρ(b, H),

where ρ(b, H) =

∫
C0(R)

∫
C0(R)

`(y−τH)b(w, dy)PH(dw). Now it can be proved that

(see Millar, 1993 and Negri, 1998)

inf
b∈K

sup
H∈Hm

ρ(b, H) = sup
ν∈Mf (Hm)

inf
b∈K

ρ(b, ν).

Then
lim

m→+∞
sup

ν∈Mf (Hm)

inf
b∈K

ρ(b, ν) =

= sup
ν∈Mf (H)

inf
b∈K

ρ(b, ν).

By the minimax theorem for Wiener spaces

inf
b∈K

sup
H∈H

ρ(b, H) =

∫
C0(R)

`(z)P∗(dz)

And this completes the proof.
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Now we turn to the problem of finding an asymptotically efficient estimator.

We want to prove that the empirical distribution function is efficient. Let us

introduce to following

Definition 2. Let S∗ ∈ S∗σ and condition S1 be fulfilled. The estimator F ∗
T is

asymptotically efficient if

lim
δ→0

lim
T→+∞

sup
S∈Vδ

ET
S

(
g(sup

x∈R

√
T |F ∗

T (x)− FS(x)|)
)

=

∫
`(w)P ∗

S(dw)

The efficiency of the EDF is given by the following result.

Theorem 6. Let conditions S1, S2, S3 and U1 hold and
∫

`(w)P ∗
S(dw) be

continuous in the uniform topology at the point S∗. Moreover suppose that the

function g is bounded, then the empirical distribution function is asymptotically

efficient.

Proof. Under conditions S1, S2, S3 and U1 the process

ηS
T (x) =

√
T
(
F̂ S

T (x)− FS(x)
)

x ∈ R, S ∈ Vδ

weakly converge to the process ηS(x), x ∈ R uniformly with respect to the

functions S ∈ Vδ. Then the efficiency of the empirical distribution function

follows from the continuous mapping theorem when g is bounded.

Unfortunately we cannot relax the assumption of boundness on g and prove

the efficiency of the EDF also for loss functions with a polynomial majorant as

in the semiparametric set-up. Note that the assumptions that we need to prove

the efficiency of the empirical distribution function when the risk function is

based on supx∈R
√

T |F̄T (x)− F (x)| are more restrictive that the ones we need

to prove the efficiency of the EDF for the mean square integrated error and

this is essentially due to the structure of the integrated mean square error and

on the fact that we don’t need the weak convergence of the process in the space

of real continuous functions vanishing at infinity in this case.
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6 Example

Example 1. Let us consider a class of functions satisfying the condition A1

such that S(y)sgn(y) ≤ −γ for |y| > M , and S is continuous. We denote such

a class of functions by S(γ, M). Let the observed process be

dXt = S(Xt)dt + σ(Xt)dWt, 0 ≤ t ≤ T, X0 = x0,

where S is an unknown function that belongs to S(γ, M) and there exist two

constants k1 and k2 such that 0 < k1 < σ(x) < k2 < +∞ for all x ∈ R. In

Negri (1998) the belonging of the drift coefficient to the class S(γ, M) and the

condition required on σ are fundamental assumptions to prove the efficiency of

the EDF. Moreover it is proved that with such kind of S and σ, the conditions

S1, S2, S3, U1 and A2 are satisfied. Conditions Q1 and Q2 are satisfied and

the continuity of RS(x, x) in the uniform topology can also be proved (see

Kutoyants, 1998). So we have a huge class of processes for which the empirical

distribution function is an efficient estimator for the invariant distribution

function in the three different set-up described previously.

Acknowledgements

My warmest thanks go to Yury A. Kutoyants for introducing me to the statis-

tics for diffusion processes and for his helpful advices and comments in the last

years.

References

Bickel, P.J. (1993). Estimation in semiparametric models, Multivariate anal-

ysis: future directions, C.R. Rao ed., Elsevier.

On Optimality of the Empirical Distribution Function for the 
Estimation of the Invariant Distribution function of a diffusion process 
Ilia Negri, pp. 83-104

ISSN 0825-0305

Afrika Statistika www.jafristat.net 101



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Bickel, P.J., Klaassen, C.A.J., Ritov, Y. & Wellner, J.A. (1993). Efficient and

adaptive estimation for semiparametric models, Baltimore, John Hopkins

University Press.

Gill, R.D. & Levit, B.Y. (1995). Applications of the van Trees inequality: a

Bayesan Cramér-Rao bound, Bernoulli, 1+2, 59-79.

Greenwood, P.E., Wefelmeyer, W., (1995). Efficiency of empirical estimators

for Markov Chains, Ann. Statist., 23, 132–143.

Dvoretsky, A., Kiefer, J., Wolfowitz, J. (1956). Asymptotic minimax character

of the sample distribution function and the classical multinomial estimator,

Ann. Statist., 27, 642–669.

Durrett, R. (1996). Stochastic Calculus: A Practical Introduction, CRC Press,

Boca Raton.

Gikhman, I. I., Skorokhod, A. V., (1972). Stochastic Differential Equations,

Springer–Verlag, New York.

Ibragimov, I.A., Hasminski, R.Z., (1981), Statistical Estimation: Asymptotic

Theory, Springer Verlag, New York.

Iacus, S.M. (1998). The van Trees inequality for diffusion processes with small

diffusion coefficient and asymptotic efficiency in a semiparametric problem,

submitted.

Koshevnik, Yu.A., Levit, B.Ya., (1976). On a non–parametric analogue of the

information matrix, Theory Probab. Applic., 21, 738–753.

Kutoyants, Yu.A. (1984). Parameter estimation for stochastic processes, Berlin,

Heldermann Verlag.

Kutoyants, Yu.A. (1997). Efficiency of the empirical distribution for ergodic

diffusion, Bernoulli, 3(4), 445-456.

Kutoyants, Yu.A. (2004). Statistical Inference for Ergodic Diffusion Processes,

Springer.

On Optimality of the Empirical Distribution Function for the 
Estimation of the Invariant Distribution function of a diffusion process 
Ilia Negri, pp. 83-104

ISSN 0825-0305

Afrika Statistika www.jafristat.net 102



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Kutoyants Yu.A., Negri I., (2002). On L2-efficiency of empiric distribution

for diffusion process, Theory of Probability and its Applications, v.46, No 1,

p.164-169.

Levit, B.Ya. (1974). On the optimality of some statistical estimates, Proceed-

ings of the Prague Symposium on Asymptotic Statistics, Prague, Czechoslo-
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