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Résumé. (Abstract in French) Nous proposons une nouvelle classe généralisée de
distributions appelée la famille de distributions impaires Lindley-G Power Series
(OL-GPS) et une classe spéciale, à savoir la famille de distributions des séries de
puissance impaires Lindley-Weibull (OL-WPS). Nous dérivons également les pro-
priétés structurelles de la famille de distributions OL-GPS, y compris les moments,
les statistiques d’ordre, l’entropie Rényi, les écarts moyens et médians, les courbes
de Bonferroni et de Lorenz et les estimations du maximum de vraisemblance. Des
sous-modèles des cas particuliers ont également été obtenus avec leurs propriétés
structurelles. Une étude de simulation visant à examiner la cohérence des esti-
mateurs du maximum de vraisemblance pour chaque paramètre est présentée.
Enfin, des exemples de données réelles sont présentés pour illustrer l’applicabilité
et l’utilité du modèle proposé.
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1. Introduction

Increasing demand for extended models in areas of biology, life time analysis,
reliability, insurance and economics, has motivated statisticians to work on
improving classical models by adding some extra shape and scale parameters
on these models. The extra parameters are good in handling skewness and
kurtosis. For example, survival time data is generally highly skewed and as
such, modelling it using classical distributions may result in over or under-
fitting of the data. The generalized or modified distributions provides more
flexibility in modelling real life data in areas such as lifetime analysis, relia-
bility, finance and insurance. Several methods for generating new families of
distributions have been studied, these include the work by Eugene et al. (2002),
Cordeiro et al. (2011), Alexander et al. (2012), Zografos and Balakrishnan (2009),
Ristić and Balakrisihnan (2012), Alzaatreh et al. (2013), Alzaghal et al.(2013),
Cordeiro et al. (2013), Cordeiro et al. (2014b), Bourguignon et al. (2014b),
Gomes-Silva et al. (2017), and Marshall and Olkin (1997), to mention a few.

In real life applications, empirical hazard rate curves often exhibit non-monotonic
shapes such as a bathtub, upside-down bathtub (uni-modal) and others. So,
increased interest in generating new families of distributions that can provide
more flexibility in lifetime modelling. In this paper, we compound the odd Lindley-G
distribution and power series distributions to produce a new class of distributions
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and its sub-models. The new class of distributions is called the odd Lindley-G
Power Series (OL-GPS) class of distributions and its sub-model odd Lindley-Weibull
power series (OL-WPS) class of distributions.

Lindley (1958)developed the Lindley distribution by mixing the exponential and
length-biased exponential distributions to illustrate the difference between fiducial
and posterior distributions. Ghitany et al. (2005) investigated the properties of
this distribution. Nadarajah et al. (2011) studied the mathematical and statis-
tical properties of the generalized Lindley (GL) distribution. Sankaran (1970)
studied the discrete Poisson-Lindley distribution, Ghitany et al. (2013) developed
and studied the power Lindley and associated inference, Oluyede et al. (2015)
developed the log-generalized Lindley-Weibull distribution with application,
Gomes-Silva et al. (2017) developed the odd Lindley-G family of distributions,
Oluyede and Yang (2015) presented the beta generalized Lindley distribution.
Zakerzadeh and Dolati (2009) presented and studied another generalization of
the Lindley distribution. Chipepa et al. (2019a) studied the beta odd Lindley-G
distribution. Chipepa et al. (2019) also developed important and useful results
on the Kumaraswamy odd Lindley-G distribution. These generalizations of the
Lindley distribution are considered to be useful life distribution models and
are suitable for modelling data with different types of hazard rate functions:
increasing, decreasing, bathtub and uni-modal.

Similarly, many generalizations of the power series distribu-
tions are available in the literature, these include works by
Chahkandi and Ganjali (2009), Morais and Barreto-Souza (2011),
Mahmoudi and Jafari (2012), Silva et al. (2013), Bidram and Nekoukhou (2013),
Silva et al. (2015), Alamatsaz and Harandi (2016), Bourguignon et al. (2014),
Mahmoudi and Jafari (2017), and Cordeiro et al. (2014). For compounding contin-
uous distributions with discrete distributions, Nadarajah et al. (2013) introduced
the package Compounding in R software (R Development Core Team (2014)).

In this paper, we propose a new distribution, referred to as the odd Lindley-G power
series class of distributions and its sub-model odd Lindley-Weibull power series.
This paper is organized as follows: In section 2, we present the generalized class
of distributions, the corresponding probability density function (pdf ) and sub-
models. Some structural properties including the hazard and reverse hazard func-
tions, quantile function, and various sub-models, moments, moment generating
function, conditional moments, mean deviations, Bonferroni and Lorenz curves,
the distribution of the order statistics, Rényi entropy and estimates of model pa-
rameters are presented. In section 3, the special cases of the odd Lindley-Weibull
power series distribution are presented. Monte Carlo simulation study is conducted
to examine the consistency of the maximum likelihood estimators for each parame-
ter in section 4. Applications of the proposed model to real data are given in section
5, followed by summary remarks.
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2. The Model and Properties

In this section, we derive the new model, the odd Lindley-G power series (OL-GPS)
and its statistical properties which includes expansion of the density, hazard
function, quantile function, moments, mean deviations, Lorenz and Bonferroni
curves, order statistics, Rényi entropy and maximum likelihood estimation of
model parameters.

Gomes-Silva et al. (2017) proposed the odd Lindley-G (OL-G) distribution whose
cumulative distribution function (cdf ), probability density function (pdf ) and sur-
vival function are given by

F
OL−G

(x; a, ξ) =

∫ G(x;ξ)
1−G(x;ξ)

0

a2(1 + t)

1 + a
exp{−at}dt

= 1− a+G(x; ξ)

(1 + a)G(x; ξ)
exp

{
− a

G(x; ξ)

G(x; ξ)

}
, (1)

f
OL−G

(x; a, ξ) =
a2

(1 + a)

g(x; ξ)

[G(x; ξ)]3
exp

{
−a

G(x; ξ)

G(x; ξ)

}
, (2)

and

F (x; a, ξ) =
a+G(x; ξ)

(1 + a)G(x; ξ)
exp

{
−a

G(x; ξ)

G(x; ξ)

}
, (3)

respectively, for a > 0, where G(x; ξ) and g(x; ξ) is the baseline cdf and pdf,
respectively, and G(x; ξ) = 1 − G(x; ξ) is the survival function. We were motivated
by the structural property of this family, which allows for the inclusion of any
continuous baseline distribution in the new family and also the traceability of
the statistical properties of this new family of distributions. Another important
motivation for the OL-GPS family of distributions, particularly for use in survival
and reliability studies is as follows: Suppose the failure of a device is due to
the presence of an unknown number of initial defects of the same kind say N ,
which is identifiable only after causing failure and are repaired perfectly. Let Yi,
i = 1, ..., N, denote the time to the failure of the device due to the ith defect and
assume the Yi’s are independent and identically distributed (iid) OL-G random
variables independent of N which is a truncated power series random variable,
then the time to the first failure can be modelled by a distribution in the class of
OL-GPS distributions. The proposed class of distributions can be used for series
systems with identical components, which is often the case in many industrial
applications and biological organisms.

Now, consider a sequence of N iid random variables, say Yi, i = 1, . . . , N , from the
OL-G distribution. Also, let N be a discrete random variable following a power series
distribution assumed to be truncated at zero, whose probability mass function
(pmf) is given by
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P (N = n) =
anθ

n

C(θ)
, n = 1, 2, . . . , (4)

where C(θ) =
∑∞

n=1 anθ
n is finite, θ > 0, and {an}n≥1 a sequence of positive real

numbers. The power series family of distributions includes binomial, Poisson,
geometric and logarithmic distributions (see Johnson et al (1994)).

We mix the OL-G distribution and power series distribution to obtain a new class
of distributions, namely, odd Lindley-G power series (OL-GPS) distribution. Given
N , let X1, X2, ..., XN be identically and independently distributed (iid) random vari-
able following OL-G distribution. Let X = Y(1) = min(Y1, . . . , YN ). The conditional
distribution of X given N = n is given by

GX|N=n(x) = 1−
n∏

i=1

(1−G(x)) = 1− Sn(x)

= 1−
[

a+G(x; ξ)

(1 + a)G(x; ξ)
exp

{
−a

G(x; ξ)

G(x; ξ)

}]n
.

Thus, the cdf of the life length of the whole system, X, say Fθ, is given by

Fθ(x) = 1− C(θS(x))

C(θ)
= 1−

C
(
θ
(

a+G(x;ξ)

(1+a)G(x;ξ)
exp

{
−aG(x;ξ)

G(x;ξ)

}))
C(θ)

,

that is, the cdf of the OL-GPS distribution denoted by OL-GPS(a, θ; ξ) is given by
the marginal distribution of X(1), that is,

Fθ(x) =

∞∑
n=1

anθ
n

C(θ)

(
1−

( a+G(x; ξ)

(1 + a)G(x; ξ)
exp

{
−a

G(x; ξ)

G(x; ξ)

})n)

= 1−
C
(
θ
(

a+G(x;ξ)

(1+a)G(x;ξ)
exp

{
−aG(x;ξ)

G(x;ξ)

}))
C(θ)

, x > 0. (5)

The pdf is given by

fθ(x) =
θa2

(1 + a)

g(x; ξ)

G3(x; ξ)
exp

(
− a

G(x; ξ)

G(x; ξ)

)
C ′
(
θ
(

a+G(x;ξ)

(1+a)G(x;ξ)
exp

{
−aG(x;ξ)

G(x;ξ)

}))
C(θ)

.

(6)
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Table 1. Special Cases of the OL-GPS

Distribution an C(θ) cdf

OL-G Poisson (n!)−1 eθ − 1 1−
exp

(
θ

(
a+G(x;ξ)

(1+a)G(x;ξ)
exp

{
−a

G(x;ξ)

G(x;ξ)

}))
−1

eθ−1

OL-G Geometric 1 θ(1− θ)−1 1−
(1−θ)

(
a+G(x;ξ)

(1+a)G(x;ξ)
exp

{
−a

G(x;ξ)

G(x;ξ)

})
1−θ

(
a+G(x;ξ)

(1+a)G(x;ξ)
exp

{
−a

G(x;ξ)

G(x;ξ)

})

OL-G Logarithmic n−1 − log(1− θ) 1−
log

(
1−θ

(
a+G(x;ξ)

(1+a)G(x;ξ)
exp

{
−a

G(x;ξ)

G(x;ξ)

}))
log(1−θ)

OL-G Binomial
(
m
n

)
(1 + θ)m − 1 1−

(
1+θ

(
a+G(x;ξ)

(1+a)G(x;ξ)
exp

{
−a

G(x;ξ)

G(x;ξ)

}))m

−1

(1+θ)m−1

Several sub-classes of the OL-GPS distribution can be obtained by varying the
baseline distribution function G(x; ξ) and the power series distribution.

Remark: Let C ′(θ) be the derivative of C(θ), that is, C ′(θ) =
∑∞

n=1 nanθ
n−1, then the

density of Fθ, say fθ, is given by

fθ(x) =
dFθ(x)

dx
=

θg(x)C ′(θS(x))

C(θ)
.

The hazard and reverse hazard rate functions are given by

hθ(x) =
fθ(x)

Sθ(x)
= θg(x)

C ′(θS(x))

C(θS(x))
, and τθ(x) =

fθ(x)

Fθ(x)
= θg(x)

C ′(θS(x))

C(θ)− C(θS(x))
,

respectively, where Sθ(x) = 1 − Fθ(x). Therefore, the hazard function of OL-GPS
distribution is given in equation (7). That is,

h
θ
(x) (7)

=
C ′
(
θ
(

a+G(x;ξ)

(1+a)G(x;ξ)
exp

{
−aG(x;ξ)

G(x;ξ)

}))
C
(
θ
(

a+G(x;ξ)

(1+a)G(x;ξ)
exp

{
−aG(x;ξ)

G(x;ξ)

})) θa2

(1 + a)

g(x; ξ)

G3(x; ξ)
exp

{
− a

G(x; ξ)

G(x; ξ)

}
.

Table 1 shows some special cases of the OL-GPS distribution.
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2.1. Quantile Function

The quantile function of the OL-GPS distribution is obtained by inverting Fθ(x) = u,
0 ≤ u ≤ 1. This is equivalent to solving the equation

− lnC(θS(x)) + lnC(θ) + ln(1− u) = 0, (8)

which can be expressed as

G(x) +
G(x)

a
ln

[
(1 + a)G(x)C−1((1− u)C(θ))

θ(a+G(x))

]
= 0. (9)

where C−1 is the inverse function. The solution of the non-linear equation (8) gives
the quantiles of the OL-GPS class of distributions.

2.2. Expansion of Density

In this sub-section, we present the series expansion of the OL-GPS distribution.
The OL-GPS class of distributions can be expresses as an infinite linear combina-
tion of exponentiated-G (Exp-G) distribution as follows:

f
θ
(x) =

∞∑
p,q=0

vp,qgp+q+1(x; ξ), (10)

where gp+q+1(x; ξ) = (p + q + 1)g(x; ξ)[G(x; ξ)]p+q is the Exp-G density function with
power parameter (p+ q + 1) and

vp,q =

∞∑
n=1

n−1∑
k=0

anθ
n

C(θ)

(−1)qnq+1

p!q!

(
n− 1

k

)
a1+q+n−k

(1 + a)n
Γ(p+ 2 + n+ q − k)

Γ(2 + n+ q − k)

× 1

p+ q + 1
, (11)

see appendix for details. Thus, the statistical properties of the OL-GPS family of
distributions can be obtained directly from those of the Exp-G class of distribu-
tions.

2.3. Moments

We assume that Wp+q+1 ∼ Exp-G(p+ q+1) and let X ∼ OL-GPS(a, θ; ξ), then the sth

moment can be obtained from equation (10) as follows:
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E(Xs) =

∞∑
p,q=0

vp,qE(W s
p+q+1), (12)

where E(W s
p+q+1) denotes the sth moment of Wp+q+1 which follows an Exp-G distri-

bution with parameter (p+q+1) and vp,q is as defined in equation (11). Furthermore,
the incomplete moments can be obtained as follows

IX(t) =

∫ t

0

xsfθ(x; a, θ, ξ)dx =

∞∑
p,q=0

vp,qIp+q+1(t),

where Ip+q+1(t) =
∫ t

0
xsgp+q+1(x; a, θ, ξ)dx. The moment generating function (mgf) of

X is given by

MX(t) =

∞∑
p,q=0

vp,qE(etWp+q+1),

where E(etWp+q+1) is the mgf of the Exp-G distribution and vp,q is as defined in
equation (11). Furthermore, we can obtain the characteristic function and is given
by ϕ(t) = E(eitX), where i =

√
−1, that is

ϕ(t) =

∞∑
p,q=0

vp,qϕp+q+1(t),

where ϕp+q+1(t) is the characteristic function of Exp-G distribution and vp,q is as
defined in equation (11).

2.4. Mean Deviation, Lorenz and Bonferroni Curves

Let X ∼ OL-GPS(a, θ, ξ), the mean deviation about the mean and about the median
are defined by

δ1(x) =

∫ ∞

0

|x− µ| f
θ
(x; a, θ, ξ)dx and δ2(x) =

∫ ∞

0

|x−M | f
θ
(x; a, θ, ξ)dx,

respectively, where µ = E(X) and M = Median(X). The deviations can also be
expressed as

δ1(x) = 2µF
θ
(µ)− 2

∫ µ

0

xf
θ
(x; a, θ, ξ)dx = 2µF

θ
(µ)− 2

∞∑
p,q=0

vp,qIp+q+1(t), (13)

Journal home page: http://www.jafristat.net, www.projecteuclid.org/euclid.as,
www.ajol.info/afst



F. Chipepa, B. Oluyede, B. Makubate, Afrika Statistika, Vol. 16 (3), 2021, pages 2825 -
2849. The New Odd Lindley-G Power Series Class of Distributions: Theory, Properties and
Applications. 2833

and

δ2(x) = µ− 2

∫ M

0

xf
θ
(x; a, θ, ξ)dx = µ−

∞∑
p,q=0

vp,qIp+ q + 1(t). (14)

Bonferroni and Lorenz curves are given by

B(m) =
1

mµ

∫ t

0

∞∑
p,q=0

xvp,qgp+q+1(x; ξ)dx =
1

mµ

∞∑
p,q=0

vp,qIp+q+1(t), (15)

and

L(m) =
1

µ

∫ t

0

∞∑
p,q=0

xvp,qgp+q+1(x; ξ)dx =
1

µ

∞∑
p,q=0

vp,qIp+q+1(t), (16)

where Ip+q+1(t) =
∫ t

0
xgp+q+1(x; ξ)dx, is the first incomplete moment of the Exp-G

distribution and vp,q is as given in equation (11).

2.5. Order Statistics and Rényi Entropy

In this section, we present the distribution of the order statistic and Rényi entropy
for the OL-GPS class of distributions.

2.5.1. Order Statistics

Order statistics play an important role in probability and statistics. The pdf of the
ith order statistic from the OL-GPS pdf f

θ
(x) is given by

gi:n(x) =

∞∑
p,q,h,w,z=0

v∗p,q,h,w,zgp+q+h+z+1(x; ξ), (17)

where gp+q+h+z+1(x; ξ) = (p+q+h+z+1)g(x; ξ)Gp+q+h+z(x; ξ) is the Exp-G distribution
with power parameter (p+ q + h+ z + 1) and

v∗p,q,h,w,z =
n!

(i− 1)!(n− i)!

j+i−1∑
s=0

n−i∑
j=0

w∑
k=0

(−1)j+s+hθwwhah+w−k

h!z!Cs(θ)(1 + a)w

×
(
n− i

j

)(
j + i− 1

s

)(
w

k

)
Γ(z + h+ w − k)

Γ(h+ w − k)

p+ q + 1

p+ q + h+ z + 1
dw,s,

(18)

see appendix for details. It follows that the ith order statistic of the OL-GPS series
can be expressed as an infinite linear combination of Exp-G densities.
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2.5.2. Rényi Entropy

Entropy is a measure of variation of uncertainty for a random variable X with
pdf f(x). There are two popular measures of entropy, namely Shannon entropy
and Rényi entropy. Shannon entropy is due to Shannon, C.E. (1951) and Rényi
entropy is due to Rényi (1960). Rényi entropy is defined by

IR(ν) = (1− ν)−1 log

[∫ ∞

0

fν
θ
(x)dx

]
, v ̸= 1, v > 0, (19)

and Shannon entropy is given by E {− log[f(X)]}. Shannon entropy is a special
case of Rényi entropy, we therefore, derive expressions for Rényi entropy for the
OL-GPS distribution.

Therefore, Rényi entropy of the OL-GPS class of distributions can be expressed as

IR(ν) = (1− ν)−1 log

[ ∞∑
p,s,z=0

w∗
p,s,ze

(1−ν)IREG

]
, (20)

where

w∗
p,s,z =

s∑
k=0

(−1)zθν+sa2ν+z+s−k(ν + s)z

Cν(θ)(1 + a)ν+sz!p!

Γ(p+ 3ν + s+ z − k)

Γ(3ν + s+ z − k)

(
s

k

)
ds,v

(
ν

p+ z
+ 1

)ν

,

and IREG =
∫∞
0

[(
p+z
ν + 1

)
g(x; ξ)[G(x; ξ)]

p+z
ν

]ν
dx is Rényi entropy of Exp-G distribu-

tion with parameter
(
p+z
ν + 1

)
. Details of the derivation are given in the appendix

section. It follows that Rényi entropy of OL-GPS class of distributions can be derived
directly from Rényi entropy of Exp-G distribution.

2.6. Maximum Likelihood Estimation

Let Xi ∼ OL-GPS(a, θ; ξ) and ∆ = (a, θ; ξ)T be the parameter vector. The log-likelihood
ℓ = ℓ(∆) based on a random sample of size n is given by

ℓ = ℓ(∆) = 2n ln a+ n ln θ − n ln(1 + a) +

n∑
i=1

g(xi; ξ)− 3

n∑
i=0

G(xi; ξ)

− a

n∑
i=0

G(xi; ξ)

G(xi; ξ)
+

n∑
i=1

ln

(
C ′
(

a+G(xi; ξ)

(1 + a)G(xi; ξ)
e
−a

G(xi;ξ)

G(xi;ξ)

))
− n lnC(θ).

(21)
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Elements of the score vector U = ( ∂ℓ∂a ,
∂ℓ
∂θ ,

∂ℓ
∂ξk

) are given in the appendix section.
The maximum likelihood estimates of the parameters, denoted by ∆̂ are obtained
by solving the nonlinear equation ( ∂ℓ∂a ,

∂ℓ
∂θ ,

∂ℓ
∂ξ )

T = 0, using a numerical method such
as Newton-Raphson procedure. The Fisher information matrix is given by I(∆) =

[Iθi,θj ](2+q)×(2+q) = E(− ∂2ℓ
∂θi∂θj

), i, j = 1, 2, ..., 2 + q can be numerically obtained by
using MATLAB or NLMIXED in SAS or R software. The total Fisher information
matrix nI(∆) can be approximated by

Jn(∆̂) ≈
[
− ∂2ℓ

∂θi∂θj

∣∣∣∣
∆=∆̂

]
(2+q)×(2+q)

, i, j = 1, 2, ..., 2 + q, (22)

where q is the number of components in the vector of parameters ξ. Note that for
a given set of observations, the matrix given in equation (22) is obtained after the
convergence of the Newton-Raphson procedure via NLMIXED in SAS or R software.

3. Some Special Cases

In this section, we look at some special cases of the OL-GPS distribution. These
special cases are the odd Lindley-Weibull Poisson (OL-WP) and odd Lindley-Weibull
geometric distributions. We derive the statistical properties for the special cases,
which include quantile and hazard rate functions, and moments.

3.1. The Odd Lindley-Weibull Power Series Distribution, Sub Models and Some
Properties

We further derive the odd Lindley-Weibull power series (OL-WPS) distribution, its
sub models and statistical properties. We applied the OL-W geometric (OL-WG)
distribution to two real data sets, to illustrate the flexibility of the new class of
distributions. The cdf and pdf of the OL-WPS distribution are given by

F
OL−WPS

(x) = 1−
C
(
θ
(

a+e−(x/c)k

(1+a)e−(x/c)k
e
−a 1−e−(x/c)k

e−(x/c)k

))
C(θ)

(23)

and

f
OL−WPS

(x) =
θa2(k/c)(x/c)k−1e−(x/c)k

(1 + a)e−3(x/c)k
e
−a

(1−e−(x/c)k )

e−(x/c)k

C ′
(
θ
(

a+e−(x/c)k

(1+a)e−(x/c)k
e
−a 1−e−(x/c)k

e−(x/c)k

))
C(θ)

,

respectively, for θ, a, c, k > 0.
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Fig. 1. pdf and hrf plots for OL-WP distribution

3.1.1. Sub Models of OL-WPS Distribution

In this section, we consider two sub-models of the OL-WPS distribution, namely,
OL-W Poisson (OL-WP) and OL-W geometric (OL-WG) distributions.

– OL-WP Distribution

We present the OL-WP distribution and its statistical properties. The cdf and
pdf of the OL-WP distribution are given by

F
OL−WP

(x) = 1−
exp

(
θ
(

a+e−(x/c)k

(1+a)e−(x/c)k
e
−a 1−e−(x/c)k

e−(x/c)k

))
− 1

(exp(θ)− 1)
(24)

and

f
OL−WP

(x) (25)

=
θa2(k/c)(x/c)k−1e−(x/c)k

(1 + a)e−3(x/c)k
e
−a

(1−e−(x/c)k )

e−(x/c)k

exp
(
θ
(

a+e−(x/c)k

(1+a)e−(x/c)k
e
−a 1−e−(x/c)k

e−(x/c)k

))
(exp(θ)− 1)

,

respectively, for θ, a, c, k > 0.

Figure 1 shows the plots of pdf ’s and hrf s of OL-WP distribution for selected pa-
rameter values. The pdf can take various shapes including uni-modal, left and
right skewed. Graphs of the hazard function exhibit increasing and decreasing
shapes for selected values of the parameters.
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Fig. 2. Plots of skewness and kurtosis for OL-WP distribution

– Quantile Function

We obtain the quantile function of the OL-WP distribution by solving the non
linear equation (26)

(e−(x/c)k ) ln

[
(1 + a)e−(x/c)k ln[(1− u)(eθ − 1) + 1]

θ(a+ e−(x/c)k )

]
+ a(1− e−(x/c)k ) = 0. (26)

– Hazard Function

The hazard function of the OL-WP distribution is given by

h
OL−WP

(x) =
f
OL−WP

(x)

1− F
OL−WP

(x)
, (27)

where F
OL−WP

(x) and f
OL−WP (x) are given in equations (24) and (25) respectively.

– Moments

Let X ∼ OL−WP (a, θ, c, k), the sth moment can be obtained from equation (12)
as

E(Xs) =

∞∑
p,q=0

vp,qE(W s
p+q+1),

where E(W s
p+q+1) denotes the sth moment of Wp+q+1 which follows an Exp-W

distribution with parameter (p+ q + 1) and vp,q is as defined in equation (11).

We present in Figures 2 and 3, 3D plots of skewness and kurtosis for the
OL-WP distribution.
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Fig. 3. Plots of skewness and kurtosis for OL-WP distribution

– When we fix the parameters c and k, skewness and kurtosis of OL-WP dis-
tribution increase as the parameters a and θ increase.

– When we fix the parameters a and θ, skewness and kurtosis of OL-WP dis-
tribution decrease as the parameters c and k increase.

– OL-WG Distribution

The cdf and pdf of OL-WG distribution are given by

F
OL−WG

(x) = 1−
(1− θ)

(
a+e−(x/c)k

(1+a)e−(x/c)k
e
−a 1−e−(x/c)k

e−(x/c)k

)
1− θ

(
a+e−(x/c)k

(1+a)e−(x/c)k
e
−a 1−e−(x/c)k

e−(x/c)k

) (28)

and

f
OL−WG

(x) (29)

=
θa2(k/c)(x/c)k−1e−(x/c)k

(1 + a)e−3(x/c)k
e
−a

(1−e−(x/c)k )

e−(x/c)k
(1− θ)

θ
(
1− θ

(
a+e−(x/c)k

(1+a)e−(x/c)k
e
−a 1−e−(x/c)k

e−(x/c)k

)) ,

respectively, for a, c, k > 0, 0 < θ < 1.

Plots of the density and hazard function for selected parameter values are given
in Figure 4. The density and hazard functions reveal different shapes for various
values of the parameters, as shown in these plots. The graphs of the hazard func-
tion exhibit increasing, decreasing and upside down bathtub followed by bathtub
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Fig. 4. pdf and hrf plots for OL-WG distribution

shapes for selected values of the parameters. This flexibility makes the OL-WG haz-
ard function useful and suitable for non-monotonic empirical hazard behaviours
which are likely to be encountered in real life problems.

– Quantile Function

Furthermore, we can obtain the quantile function of the OL-WG distribution by
solving the non linear equation (30)

(e−(x/c)k ) ln

[
(1− u)(1 + a)e−(x/λ)k

(1− θ)(a+ e−(x/c)k )

(
1− θ

(
(a+ e−(x/c)k )

(1 + a)e−(x/c)k
e
−a 1−e−(x/c)k

e−(x/c)k

))]
+ a(1− e−(x/c)k ) = 0. (30)

– Hazard Function

The hazard function of the OL-WG distribution is given by

h
OL−WG

(x) =
f
OL−WG

(x)

1− F
OL−WG

(x)
, (31)

where F
OL−WG

(x) and f
OL−WG(x) are given in equations (28) and (29) respectively.

– Moments

Let X ∼ OL-WG(a, θ, c, k), the sth moment can be obtained from equation (12) as

E(Xs) =

∞∑
p,q=0

vp,qE(W s
p+q+1),
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Fig. 5. Plots of skewness and kurtosis for OL-WG distribution
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Fig. 6. Plots of skewness and kurtosis for OL-WG distribution

3D plots of skewness and kurtosis for the OL-WG distribution are shown in
Figures 5 and 6
– When we fix the parameters a and θ, skewness and kurtosis of OL-WG dis-

tribution decrease as the parameters c and k increase.
– When we fix the parameters θ and k, skewness and kurtosis of OL-WG dis-

tribution increase as the parameters a and c increase.

4. Simulation Study

In this section, we examine the performance of the OL-WG distribution by conduct-
ing various simulations for different sizes (n = 25, 50, 100, 200, 400, 800, 1000)
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via the mle package in R software. We simulate 1000 samples for the true param-
eter values given in the Table 3. Table 3 lists the mean MLEs of the four model
parameters along with the respective root mean squared errors (RMSEs). The bias
and RMSE are given by:

Bias(θ̂) =

∑N
i=1 θ̂i
N

− θ, and RMSE(θ̂) =

√∑N
i=1(θ̂i − θ)2

N
,

respectively.

Table 2. Monte Carlo Simulation Results for OL-WP Distribution: Mean, RMSE and
Average Bias

a=1.5,c=2.5,k=0.5,θ=0.5 a=1.5,c=1.5,k=0.5,θ=0.5
Parameter n Mean RMSE Average Bias Mean RMSE Average Bias

25 7.783579 10.272393 6.283579 8.274155 14.341830 6.774155
50 4.736499 6.508272 3.236499 4.547003 6.770187 3.047003

100 3.288397 4.721441 1.788397 3.037911 4.490376 1.537911
a 200 2.739259 3.133344 1.239259 2.248669 2.325205 0.748669

400 2.289573 2.207100 0.789573 2.116530 1.728799 0.616530
800 2.095694 1.876525 0.595694 1.869231 1.232147 0.369231

1000 1.668904 1.088960 0.168904 1.732841 1.165697 0.232841
25 11.691982 14.156839 9.191982 8.892843 12.928910 7.392843
50 9.065003 11.413652 6.565003 6.206994 9.501229 4.706994

100 6.333609 7.894797 3.833609 4.056575 6.329552 2.556575
c 200 4.502284 5.486437 2.002284 2.419534 3.874855 0.919534

400 3.769070 3.710749 1.269070 1.821268 1.652147 0.321268
800 3.061289 2.444649 0.561289 1.546996 0.834321 0.046996

1000 2.913359 1.547843 0.413359 1.502427 0.631997 0.002427
25 0.605430 0.465537 0.105430 0.688197 0.662477 0.188197
50 0.659221 0.490990 0.159221 0.685997 0.652259 0.185997

100 0.603962 0.433812 0.103962 0.612533 0.473966 0.112533
k 200 0.516532 0.350328 0.016532 0.521943 0.418722 0.021943

400 0.531757 0.278765 0.031757 0.510751 0.362302 0.010751
800 0.497284 0.232856 -0.002716 0.503048 0.317897 0.003048

1000 0.530897 0.193017 0.030897 0.520226 0.296641 0.020226
25 0.772885 1.219599 0.272885 0.780942 1.124962 0.280942
50 0.685033 1.033124 0.185033 0.748589 1.006121 0.248589

100 0.758690 1.042655 0.258690 0.723410 0.852227 0.223410
θ 200 0.817472 0.928553 0.317472 0.796958 0.793460 0.296958

400 0.643159 0.626722 0.143158 0.722928 0.644062 0.222928
800 0.651751 0.553663 0.151751 0.662675 0.468781 0.162675

1000 0.543941 0.365118 0.043941 0.618455 0.388563 0.118455

From the results, we can verify that as the sample size n increase, the mean es-
timates of the parameters tend to be closer to the true parameter values, since
RMSEs and bias decrease for all the parameter values.

5. Applications

To illustrate the flexibility of the OL-WPS family of distributions, we present
applications of the special case; OL-WG distribution to two real data sets.
Goodness-of-fit of the model was assessed by the use of the following goodness-
of-fit statistics: -2loglikelihood (-2 log L), Akaike Information Criterion (AIC),
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Table 3. Monte Carlo Simulation Results for OL-WP Distribution: Mean, RMSE and
Average Bias

a=1.5,c=2.5,k=2.5,θ=0.5 a=0.5,c=2.5,k=1.5,θ=0.5
Parameter n Mean RMSE Average Bias Mean RMSE Average Bias

25 3.978856 4.669299 2.478856 7.159171 10.081066 6.659171
50 3.676939 4.691505 2.176939 5.332959 7.622215 4.832959

100 2.910398 3.267302 1.410398 3.713096 5.657598 3.213096
a 200 2.621227 2.557964 1.121227 2.665682 3.770198 2.165682

400 2.295367 1.905574 0.795367 2.059650 2.752570 1.559650
800 2.060386 1.537827 0.560386 1.607547 1.969328 1.107547

1000 2.001673 1.643630 0.501673 1.400141 1.748855 0.900141
25 5.512436 6.403858 3.012436 15.902946 23.424029 13.402945
50 5.019606 5.455636 2.519606 11.939488 18.355883 9.439488

100 4.090070 4.104111 1.590070 7.886983 12.953901 5.386983
c 200 3.382790 3.066108 0.882790 5.339687 9.013946 2.839687

400 2.947418 2.029009 0.447418 3.472341 4.405391 0.972341
800 2.664078 1.393817 0.164078 2.505293 1.897862 0.005293

1000 2.591227 1.138175 0.091227 2.476166 1.389003 -0.023834
25 205.608429 1064.102069 203.108429 173.008961 1205.290199 171.508961
50 104.986878 853.111401 102.486878 15.407953 67.076549 13.907953

100 36.571459 122.453736 34.071459 5.546790 19.909882 4.046790
k 200 18.874447 50.690475 16.374447 3.325044 12.696226 1.825044

400 8.779868 20.859722 6.279868 2.023790 2.421740 0.523790
800 5.300147 9.128474 2.800147 1.728432 0.906381 0.228432

1000 4.634789 8.256746 2.134789 1.639579 0.804412 0.139579
25 1.059129 1.197303 0.559129 1.758597 3.134165 1.258597
50 0.888354 0.996717 0.388354 1.419508 2.416036 0.919508

100 0.795832 0.846371 0.295832 1.215797 1.871092 0.715797
θ 200 0.783856 0.738833 0.283856 1.153559 1.564572 0.653559

400 0.682706 0.563026 0.182706 0.962849 1.170288 0.462849
800 0.633923 0.430374 0.133923 0.863184 0.855389 0.363184

1000 0.604903 0.371908 0.104903 0.759425 0.692873 0.259425

Consistent Akaike Information Criterion (AICC), Bayesian Information Criterion
(BIC), Cramer von Mises (W ∗), Andersen-Darling (A∗), Kolmogorov-Simirnov (K-S)
and sum of squares (SS) from the probability plots.

We used the subroutine NLMIXED in SAS as well as the function nlm in R to com-
pute the maximum likelihood estimates (MLEs) of the OL-WG model parameters.
The estimated values of the parameters (standard error in parenthesis), -2log-
likelihood statistic (−2 ln(L)), Akaike Information Criterion (AIC = 2p − 2 ln(L)),
Bayesian Information Criterion (BIC = p ln(n) − 2 ln(L)), and Consistent Akaike
Information Criterion (AICC = AIC + 2 p(p+1)

n−p−1 ), where L = L(∆̂) is the value of
the likelihood function evaluated at the parameter estimates, n is the number
of observations, and p is the number of estimated parameters are presented in
Tables 4 and 5.

We used the likelihood ratio (LR) test to compare the fit of the OL-WG distribution
with it’s sub-models for a given data set. For example, to test α = 1, the LR statistic
is ω = 2[ln(L(â, θ̂, ĉ, k̂)) − ln(L(ã, θ̃, c̃, 1))], where â, θ̂, ĉ, and k̂ are the unrestricted
estimates, and ã, θ̃, and c̃ are the restricted estimates. The LR test rejects the null
hypothesis if ω > χ2

ϵ
, where χ2

ϵ
denote the upper 100ϵ% point of the χ2 distribution

with 1 degrees of freedom.

The goodness-of-fit statistics W ∗ and A∗, described by
Chen and Balakrishnan (1985) are also presented in Tables 4 and 5. These
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Table 4. Parameter estimates and goodness of fit statistics for various models fitted
for active repair times data set

Estimates Statistics
Model a θ c k −2 log L AIC AICC BIC W ∗ A∗ K − S P − value

OL-WG 1.2740 0.9893 29.9610 1.6291 183.1 191.1 192.2 197.9 0.0817 0.5713 0.1114 0.7032
(3.0729) (0.02934) (25.8805) (0.2392)

OL-WG(a, θ, c, 1) 8.3314 0.6343 59.0934 1 190.1 196.1 196.7 201.1 0.1116 0.8417 0.1525 0.3102
(20.9255) (0.3800) (117.45) -

OL-WG(a, θ, 1, k) 0.02654 0.9933 1 0.4645 191.9 197.9 198.6 203.0 0.1561 1.0647 0.1413 0.4016
(0.02953) (0.01424) - (0.03832)

OL-WG(1, θ, c, 1) 1 0.9113 15.9131 1 253.5 257.5 257.8 260.9 0.1101 0.8469 0.1559 0.2856
- (0.03554) (4.0165) -
a b λ α

BGL 0.6328 0.1750 1.6205 2.3077 191.0 199.0 200.1 205.7 0.1406 1.0202 0.1985 0.0856
(0.6203) (0.03378) (0.04227) (2.9060)

a b λ θ
BOL-U 1.1045 1.0599 6.7740 ×105 2.7006 ×106 190.9 198.9 200.1 205.7 0.1490 1.0715 0.1577 0.2728

(0.2302) (0.2191) (3.2121 ×10−7) (8.0572 ×10−8)
α β λ γ

EWP 0.7404 2.3877 5.9609 ×10−8 0.6644 186.0 194.0 195.1 200.8 0.1020 0.7413 0.1298 0.5102
(0.3743) (1.2723) (0.0304) (0.1558)

statistics can be used to verify which distribution fits better to the data. In general,
the smaller the values of W ∗, A∗, KS∗ and SS the better the fit.

The OL-WG distribution was compared to other four parameter non nested mod-
els, namely; beta generalized Lindley (BGL) (see Oluyede and Yang (2015)), beta
odd Lindley-uniform (BOL-U) by Chipepa et al. (2019a) and eponentiated Weibull-
Poisson (EWP) (see Mahmoudi and Sepahdar (2013)) distributions.

5.1. Active Repair Times Data

The first data set are data on active repair times (hours) for an airborne communi-
cation transceiver (see Chhikara and Folks (1977)). The data are as follows: 0.50,
0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80, 1.00, 1.00, 1.00, 1.00, 1.10, 1.30, 1.50,
1.50, 1.50, 1.50, 2.00, 2.00, 2.20, 2.50, 2.70, 3.00, 3.00, 3.30, 4.00, 4.00, 4.50,
4.70, 5.00, 5.40, 5.40, 7.00, 7.50, 8.80, 9.00, 10.20, 22.00, 24.50.
The variance-covariance matrix is given by

9.4428 −0.07894 58.7471 0.03104
−0.07894 0.000861 −0.2799 0.001991
58.7471 −0.2799 669.80 1.1802
0.03104 0.001991 1.1802 0.05722


and the 95% confidence intervals for the model parameters are given by
a ∈ [−4.9366, 7.4846], θ ∈ [0.9300, 1.0486], c ∈ [−22.3454, 82.2673] and k ∈ [1.1456, 2.1125].

The LR test statistic results for the OL-WG model for active repair times data are
as follows; H0: OL-WG against Ha: OL-WG(a, θ, c, 1) are 7.0 (p-value = 0.00815), H0:
OL-WG against Ha:OL-WG(a, θ, 1, k) 8.8 (p-value = 0.00301) and H0: OL-WG against
Ha: OL-WG(1, θ, c, 1) 70.4 (p-value < 0.00001). We can conclude that there OL-WG
distribution is also better than the non-nested BGL, BOL-U and EWP distributions
on active repair times data set, based on all the statistics presented in Table 4.
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Fig. 7. Fitted pdf and cdf for repair times data
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Fig. 8. KM and hrf plots for repair times data

Figures 7, 8 and 9 show the fitted pdf and cdf, Kaplan-Meier (KM ), hazard rate
function (hrf ),and probability and TTT scaled plots, with the distribution of the
data given in black and our distribution in green. We conclude that our model fit
the data set well and applies to non-monotonic hazard rate.

5.2. Run Off Data

The second data set is by Chhikara and Folks (1977). The data represents run off
amounts at Jug Bridge, Maryland. The data are shown below: 0.17, 0.19, 0.23,
0.33, 0.39, 0.39, 0.4, 0.45, 0.52, 0.56, 0.59, 0.64, 0.66, 0.7, 0.76, 0.77, 0.78,
0.95, 0.97, 1.02, 1.12, 1.24, 1.59, 1.74, 2.92.
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Fig. 9. Probability and TTT scaled plots for repair times data

Table 5. Parameter estimates and goodness of fit statistics for various models fitted
for run off data

Estimates Statistics
Model a θ c k −2 log L AIC AICC BIC W ∗ A∗ K − S P − value

OL-WG 0.1810 0.9996 3.3008 2.7095 29.4 37.4 39.4 42.30 0.0147 0.1207 0.0939 0.9800
(0.2963) (0.0008) (2.2377) (0.5217)

OL-WG(a, θ, c, 1) 0.0272 0.9972 0.6734 1 33.6 39.6 40.7 43.2 0.0706 0.4825 0.1475 0.6485
(0.0382) (0.0072) (0.1537) -

OL-WG(a, θ, 1, k) 0.04337 0.9974 1 1.2568 33.7 39.7 40.8 43.4 0.0717 0.4912 0.1506 0.6225
(0.0575) (0.0067) - (0.1821)

OL-WG(1, θ, c, 1) 1 0.2819 1.1559 1 46.7 50.7 51.3 53.2 0.4280 2.5497 0.2491 0.0899
- (0.2841) (0.1269) -
a b λ α

BGL 1.5175 0.3077 6.56522 4.0216 29.6 37.6 39.6 42.5 0.0219 0.1650 0.1151 0.8949
(13.0748) (0.4060) (7.1424) (37.9026)

a b λ θ
BOL-U 2.7069 10.2290 1.6768 ×105 5.7638 ×105 30.8 38.8 40.8 43.7 0.0296 0.2216 0.1082 0.9317

(0.7246) (2.9318) (1.9065 ×10−4) (5.5463 ×10−5)
α β λ γ

EWP 1.7129 1.7275 4.9547 ×10−8 1.1954 30.6 38.6 40.6 43.5 0.0350 0.2597 0.1131 0.9062
(0.7232) (1.1335) (0.0366) (0.3782)

The variance-covariance matrix is given by
0.08779 −0.00016 0.4535 0.07189
−0.00016 7.159× 10−7 0.000075 5.312× 10−6

0.4535 0.000075 5.0074 0.3737
0.07189 5.312× 10−6 0.3737 0.2722



and the 95% confidence intervals for the model parameters are given by
a ∈ [−0.4293, 0.7912], θ ∈ [0.9978, 1.0013], c ∈ [−1.3079, 7.9095] and k ∈ [1.6350, 3.7839].
The LR test statistic results for the OL-WG model for run off data are as follows;
H0: OL-WG against Ha: OL-WG(a, θ, c, 1) are 4.2 (p-value = 0.04042), H0: OL-WG
against Ha:OL-WG(a, θ, 1, k) 4.3 (p-value = 0.03811), and H0: OL-WG against Ha:
OL-WG(1, θ, c, 1) 17.3 (p-value = 0.00018). We can conclude that there are significant
differences between OL-WG distribution and its nested models for run off data.
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Fig. 10. Fitted pdf and cdf for run off data
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Fig. 11. KM and hrf plots for run off data

The OL-WG distribution is also better than the non-nested BGL, BOL-U and EWP
distributions on run off data set, based on all the statistics presented in Table 5.

Figures 10, 11 and 12 show the fitted pdf and cdf, Kaplan-Meier (KM ), hazard rate
function (hrf ),and probability and TTT scaled plots, with the distribution of the
data given in black and our distribution in blue. We conclude that our model fit
the data set well and applies to monotonic hazard rate as well.

6. Conclusions

We presented a new class of distributions called the OL-GPS distribution and a spe-
cial case, OL-WPS distributions that are suitable for applications in various areas
including reliability, survival analysis, income distribution, actuarial sciences just
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Fig. 12. Probability and TTT scaled plots for run off data

to mention a few areas. The proposed distribution and some of its structural prop-
erties including hazard and reverse hazard functions, quantile function, moments,
conditional moments, mean deviations, Bonferroni and Lorenz curves, Rényi en-
tropy, distribution of order statistics, maximum likelihood estimates, asymptotic
confidence intervals are presented. We applied the odd Lindley Weibull Geometric
to two data sets, one with non-monotonic hazard rate and the other with monotonic
hazard rate in order to illustrate the applicability and usefulness of the proposed
class of distributions. The OL-WG distribution outperformed the selected models
BGL, BOL-U and EWP distributions and its nested models.

Appendix

The following url contain the derivations as indicated in the main text:
https://drive.google.com/file/d/1b2q8_LS2Mxj0vf4dUoJOXW4d1yaKQjJW/view?usp=

sharing
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M. (2017). The Odd Lindley-G Family of Distributions. Austrian Journal of Statistics, 46,
65-87.

Gradshetyn, I. S., and Ryzhik, I. M. (2000). Tables of Integrals, Series and Products, sixth
edition, Academic Press, San Diego.

Johnson, N. L., Kotz, S., and Balakrishnan, N. (1994). Continuous Distributions, Volume 1,
John Wiley & Sons, New York, NY.

Lindley, D.V. (1958). Fiducial Distributions and Bayes theorem. Journal of Royal Statistical
Society. Series B (Methodological). 20(1), 102-107.

Morais, A. L. and Barreto-Souza, W. (2011). A Compound Class of Weibull and Power Series
Distributions. Computational Statistics and Data Analysis, 55(3), 1410-1425.

Mahmoudi, E. and Sepahdar, A. (2013). Exponentiated Weibull?Poisson distribution: Model,
properties and applications. Mathematics and Computers in Simulation, 92, 76-97.

Journal home page: http://www.jafristat.net, www.projecteuclid.org/euclid.as,
www.ajol.info/afst



F. Chipepa, B. Oluyede, B. Makubate, Afrika Statistika, Vol. 16 (3), 2021, pages 2825 -
2849. The New Odd Lindley-G Power Series Class of Distributions: Theory, Properties and
Applications. 2849

Mahmoudi, E. and Jafari, A. A. (2012). Generalized Exponential-Power Series Distributions.
Computational Statistics and Data Analysis, 56(12), 4047-4066.

Mahmoudi, E and Jafari, A. A. (2017). The Compound Class of Linear Failure Rate-Power
Series Distributions: Model, Properties, and Applications. Communications in Statistics -
Simulation and Computation, 46(2), 1414-1440.

Marshall, A.W. and Olkin I. (1997). A New Method for Adding a Parameter to a Family of
Distributions with Applications to the Exponential and Weibull Families. Biometrika,
84, 641-652.

Nadarajah, S., Bakouch, H. S., Tahmasbi, R. (2011). A Generalized Lindley Distribution,
Sankhya B, 73, 331-359.
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