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Abstract. Frailty models have been used in literature to account for heterogeneity
among insureds in-terms of mortality. In this article, we compare the gamma
and the non-central gamma as frailty distributions with the exponentiated
exponential and exponentiated Weibull as baseline hazards. We adopt a fully
Bayesian approach to calibrate the baselines based on crude mortality rates from
a major Kenyan insurer. Comparing the gamma-exponentiated Weibull with the
non-central gamma-exponentiated Weibull models shows that the non-central
gamma provides a good fit to the real life data-set and is therefore recommended
for valuation.
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Résumé (French Abstract). Des modèles frailty ont été utilisés dans la littérature
pour prendre en compte de l’hétérogénéité des assurés en termes de mortalité.
Dans cet article, nous comparons le modeles gamma et le gamma non-central en
tant que distributions de frailty avec une loi exponentielle et Weibull exponentiées
comme fonctions de hazard. Nous adoptons une approche entièrement bayésienne
pour calibrer les niveaux de référence en fonction des taux de mortalité bruts
d’une grande compagnier kenyane. La comparaison du Weibull gamma-exponentié
gamma avec les modèles Weibull non-central-gamma exponentaited montre que le
gamma non-central fournit un bon ajustement à l’ensemble de données de la vie
réelle et est donc recommandé pour l’évaluation.
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1. Introduction and motivation

Heterogeneity mortality modeling is an important aspect of risk management in
actuarial work. Since the pioneering work of [Cox (1972)] on regression modeling
accounting for the effects of reported risk factors, [Vaupel et al.(1979)] extended
the work to accounts for both the reported risk factors e.g. smoking habits having
an impact on mortality and unreported risk factors e.g. genetic factors affecting
mortality in a frailty framework. There has since been growing literature on frailty
heterogeneity modeling in actuarial work e.g. [Wang et al.(1998)] apply a Gamma-
Gompertz frailty model for projection of human mortality improvements. The au-
thors graduate the reported mortality improvement factors in a published Society
of Actuaries tables. [Meyricke and Sherris (2013)] have adopted the frailty model
to quantify the impact of heterogeneity due to underwriting factors and frailty on
annuity values. The results showed that heterogeneity remains after underwriting
and frailty significantly impacts the fair value of both standard and underwritten
annuities. [Pitacco (2018)] applies frailty modeling to analyze the impact of frailty
on the results of cash flows and profits of life assurance and life annuity portfo-
lios. [Onchere et al.(2021)] applies the non-central gamma-Weibull frailty mixture
to model heterogeneity in insurance pricing. The findings shows that ignoring het-
erogeneity due to other factors affecting mortality other than age and sex only
leads to an underestimation of the mortality rates. In literature frailty is commonly
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modeled with a gamma distribution because of mathematical convenience, but
no biological reasons. In this article, we compare the gamma frailty mixture with
the non-central gamma (NCG henceforth) mixture applied in [Onchere et al.(2021)]
with the aim of improving the baseline modeling. In particular, the exponentiated
exponential and exponentiated Weibull baselines are considered.

2. Materials and methods

2.1. Term Assurance

The pricing of assurance products is largely influenced by the choice of the mor-
tality (µx) model ([Stehno et al.(2010)];[Gildas et al.(2018)];[Onchere et al.(2021)]).
A term assurance is an insurance contract that pays a specified amount say, B
on the death of the policyholder within a specified term say, k years. The expected
present value (EPV ) of this benefit is given by

B

∫ k

0

vt sx(t)µx+t dt, (1)

where x is the age of the insured life, vt is the present value factor and sx(t) the
survival probability.

2.2. Frailty Model

[Vaupel et al.(1979)] described the frailty model as

µ(x|ω) = ω µ0(x), (2)

where µ0(x) is the population’s base force of mortality. The non-negative variable ω
entails other factors affecting mortality other than age. Strong (weak) individuals
are associated with low (high) values of ω.

Definition 1. Let X be the future lifetime random variable with a continuous distri-
bution. A non-negative random variable ω is called frailty if the conditional hazard
function is given by

µ(x|ω) = ω µ0(x), x > 0,

where µ0(x) is the baseline age-specific hazard function.

Proposition 1. The conditional survival function is given by

S(x|ω) = exp (−ωH0(x)), x > 0, (3)
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where

H0(x) =

∫ x

0

µ0(t) dt

is the cumulative baseline hazard.

Proof of Proposition 1. The conditional survival function S(x|ω) is given by

S(x|ω) = exp (−
∫ x

0

µ(t|ω) dt)

and by using Definition 1, we have

S(x|ω) = exp

(
−
∫ x

0

ω µ0(t) dt

)
which simplifies to

S(x|ω) = exp (−ωH0(x)), x > 0.

Proposition 2. The Uni-variate marginal survival function is given by

S(x) = Lω(H0(x)), x > 0, (4)

where L(s) is the Laplace transform.

Proof of Proposition 2. The marginal survival function S(x) is given by

S(x) =

∫ ∞

0

S(x|ω) f(ω) dω.

By using expectation

S(x) = E[S(x|ω)]
and from Proposition 1, we have

S(x) = E [exp (−ωH0(x))] ,

which simplifies to

S(x) = Lω(H0(x)), x > 0.
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2.3. Proposed Frailty Distributions

2.3.1. Gamma frailty distribution

Let ω be gamma distributed with shape parameter p and scale parameter φ. The
probability density function (pdf ) is given by

f(ω) =
φpωp−1 exp (−φω)

Γ(p)
; ω > 0, p > 0, φ > 0. (5)

The Laplace transform allowing for identifiability, i.e., E(ω) = 1 is given by

L(s) =
(
1 + sσ2

)−1/σ2

.

The marginal survival, density and hazard functions are respectively:

S(x) =
(
1 + σ2H0(x)

)−1/σ2

, (6)

f(x) =
µ0(x)

(1 + σ2H0(x))(1+1/σ2)
, (7)

µ(x) =
µ0(x)

1 + σ2H0(x)
. (8)

2.3.2. Non-central gamma frailty distribution

The pdf for the NCG distribution with Y being a mixing of the distributions of

ω1 + ω2 + · · ·+ ωN

with respective weights

exp (−λ)λn

n!
,

where

ω ∼ Γ(b, λ), N ∼ P(aλ)

leads to the convolution

f(ω, a, b, λ) =

∞∑
n=0

exp (−aλ)(aλ)n

n!

[
ωb+n−1 exp (−ω

λ )

Γ(b+ n)λb+n

]
. (9)
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Proposition 3. Given that

Y = ω1 + ω2 + · · ·+ ωN ,

with respective weights

exp (−λ)(λ)n

n!
,

where

ω ∼ Γ(b, λ), N ∼ P(aλ).

Then

f(ω, a, b, λ) =

∞∑
n=0

exp (−aλ)(aλ)n

n!

[
ωb+n−1 exp{−ω

λ}
Γ(b+ n)λb+n

]
.

proof of Proposition 3.

P(Y = n) =

∞∑
n=0

P(ω1 + ω2 + · · ·+ ωN |N = n) P(N = n)

=

∞∑
n=0

[
ωb−1 exp (−ω/λ)

Γ(b)λb

]∗n
exp (−aλ)(aλ)n

n!
,

where [
ωb−1 exp (−ω/λ)

Γ(b)λb

]∗n

is the n− th fold convolution power of[
ωb−1 exp (−ω/λ)

Γ(b)λb

]

and P is the probability of the associated event.

P(Y = n) =

∞∑
n=0

[
ωb+n−1 exp (−ω/λ)

Γ(b+ n)λb+n

]
exp (−aλ)(aλ)n

n!
.
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The Laplace transform for the NCG distribution allowing for identifiability is given
by

Lω(s) = exp

(
− s

1 + 0.5σ2s

)
. (10)

[See Onchere et al.(2021) for Proof.]

The marginal survival, density and hazard functions are respectively:

S(x) = exp{−H0(x)(1 + 0.5σ2H0(x))
−1},

f(x) = µ0(x)(1 + 0.5σ2H0(x))
−2 exp{−H0(x)(1 + 0.5σ2H0(x))

−1}

and

µ(x) = µ0(x)(1 + 0.5σ2H0(x))
−2. (11)

We present below two examples with specific baseline distributions to find the
frailty hazard functions with explicit expressions.

Example 1.

If µ0(x) follows an exponentiated exponential (EE) distribution with pdf

f0(x) = γα(1− exp (−γx))α−1 exp (−γx); x > 0, γ > 0, α > 0.

Then the survival, hazard and cumulative hazard functions are respectively:

S0(x) = 1− [1− exp (−γx)]α,

µ0(x) =
αγ(1− exp (−γx))α−1 exp (−γx)

1− [1− exp (−γx)]α
,

and

H0(x) = − ln(1− [1− exp (−γx)]α).

From Equation (8), the gamma-EE frailty hazard is described explicitly as

µ(x) =
αγ (1− exp (−γx))

α−1
exp (−γx)

1− [1− exp (−γx)]
α

(
1− σ2 ln (1− [1− exp (−γx)]

α
)
)−1

. (12)
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From Equation (11) the NCG-EE frailty hazard is described explicitly as

µ(x) =
αγ (1− exp (−γx))

α−1
exp (−γx)

1− [1− exp (−γx)]
α

(
1− 0.5σ2 ln (1− [1− exp (−γx)]α)

)−2
. (13)

The EE hazard is increasing (α > 1), decreasing (α < 1) or constant (α = 1).

Example 2.

If µ0(x) follows an exponentiated Weibull (EW ) distribution with pdf

f0(x) = α (1− exp (−λxγ))
α−1

λγxγ−1 exp (−λxγ); x > 0, γ > 0, α > 0, λ > 0.

Then the survival, hazard and cumulative hazard functions are respectively:

S0(x) = 1− [1− exp (−λxγ)]
α
,

µ0(x) =
α (1− exp (−λxγ))

α−1
λγxγ−1 exp (−λxγ)

1− [1− exp (−λxγ)]
α ,

and

H0(x) = − ln (1− [1− exp (−λxγ)]
α
) .

From Equation (8) the gamma-EW frailty hazard is described explicitly as

µ(x) =
α (1− exp (−λxγ))

α−1
λγxγ−1 exp (−λxγ)

1− [1− exp (−λxγ)]
α

(
1− σ2 ln (1− [1− exp (−λxγ)]

α
)
)−1

.

(14)

From Equation (11) the NCG-EW frailty hazard is described explicitly as

µ(x) =
α(1− exp (−λxγ))α−1λγxγ−1 exp (−λxγ)

1− [1− exp (−λxγ)]α
· (1− 0.5σ2 ln(1− [1− exp (−λxγ)]α))−2.

(15)

The EW has a positive support and is also a good choice for the baseline hazard.
The hazard curve is monotone increasing if (γ ≥ 1) and (αγ ≥ 1); monotone
decreasing if (γ ≤ 1) and (αγ ≤ 1); unimodal if (γ < 1) and (αγ > 1) and bathtub
shaped if (γ > 1) and (αγ < 1).
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2.4. Parameter Estimation

Bayesian inference is a modern statistical technique that accounts for uncertainty
associated with the model parameters in the form of prior distributions. This
method have been applied as estimation procedures in actuarial modeling e.g.
by [Scollnik (1993)] in analysis of a simultaneous equations for insurance rate
making and by [Rosenberg and Young (1999)] to analyze time-varying dependent
data with possible variance shifts. In shared frailty models by [Hanagal (2020)] to
assess unreported heterogeneity in individual risks to kidney infection.

In [Butt and Haberman (2004)] an assurance application of the frailty-based
survival model is proposed. The authors discuss various choices and fit some
models to assurance mortality data. The results obtained suggest a potential range
of σ2 ≈ (2.916, 14.444) in an insured population with σ2 = 14% for the heterogeneous
case. Given the outcomes of the investigation by [Butt and Haberman (2004)], in
this research we consider σ2 = 14% for the heterogeneous case.

The Bayesian parameter estimation strategy is implemented in the following algo-
rithm run in open source Bayesian inference using Gibbs sampling (OpenBUGS).
First, the proposal distributions for the likelihood is specified as EE (α, γ) and
EW (α, λ, γ) respectively. Since we do not have prior information about baseline
parameters non-informative prior distribution is picked and assumed to be flat.
I.e gamma distributed random variables with mean 1 and variance 10000 for
the positive parameters values. Similar approach is found in [Scollnik (1993)];
[Hanagal (2020)].

The hyperparameters initial values is chosen to be Γ(0.0001, 0.0001). The actual
data to be estimated by the model is specified to be the crude mortality rates
obtained from real life mortality data-set. Parameters are estimated considering
only the range of ages [24, 65] as obtained from the real data-set. Burn in period
is set at 30000 as per the Brooks-Gelman-Rubin (BGR) plot to ensure sequence of
draws from the posterior distribution have minimal auto-correlation and can be
found by taking values from a single run of the Markov chain. This diminishes
the effect of the starting distribution. We run 3 chains in parallel and after 100, 000
iterations convergence will be monitored and if stationarity has been achieved
(implying estimates are not dependent on the prior distributions) the mean
posterior distribution will be picked as a point estimate. Models with smaller
values of the deviance information criteria (DIC) values are preferred.

The OpenBUGS codes used to analyze the dataset using the EE and EW is
available upon request.

Brooks-Gelman-Rubin Diagnostic and Trace Plots.

The BGR convergence diagnostic plots for the monitored nodes are presented in
Figure 1. As the Markov chain Monte Carlo (MCMC) simulation progresses, the val-
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BASELINE MODEL PARAMETER ESTIMATES DIC
1. Exponentiated Exponential α = 0.7244, γ = 5.996 -84.24
2. Exponentiated Weibull α = 2.29, γ = 0.7357, λ = 5.683 -104.4

Table 1: Parameter estimates for the baseline distributions.

ues of the total-sequence (green curve) and mean within-sequence interval width
(blue curve) estimates are monitored. Their ratio (red curve) is seen to converge to
one beyond 30000 iterations hence a probable choice for the burn-in period. The
dynamic trace plots also monitored in Figure 1 is shown to be mean-reverting and
the chains appear to mix freely implying stationarity has been achieved.

2.5. Model selection criteria

In the Bayesian framework we apply the DIC in model selection. DIC=D̄+pD where
D̄ is the posterior mean of −2logL measuring the quality of the goodness-of-fit of
the considered model to the data. D̂ = −2LogL is the posterior mean of stochastic
nodes and pD = D̄− D̂ is the effective number of parameter. Smaller values of DIC
indicates better models and could give negative values.

The parameter estimates for the baseline distributions are shown in Table 1. The
EW would fit better compared to the EE since the DIC is smallest.

3. Data analysis and interpretation

3.1. The Data

To preserve confidentiality, we took a sub-sample of 732 term assurance policies
that were in force in 2010 − 2015 from a large Kenyan insurer. The data contains
the policyholders details such as, date of birth, date when the contract started
and the date of death. This data will be used to estimate the real hazard rate in
ages 24− 65 as experienced by the policyholders.

3.2. Analysis and Interpretation

The aims of this exercise are:

(i) Firstly, is to show that when the gamma is applied as a frailty distribution the
hazard rates are overestimated at all ages compared to the NCG.

(ii) Secondly, is to show the relevance of the NCG frailty mixture to graduate the
insurer’s crude mortality rates.

Assumptions:
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Name Value
Chi-squared statistic 1722
Degree of freedom 1681
Chi-squared p-value 0.2379

Table 2: Chi-squared goodness of fit of EE to the crude mortality rates

Name p-value Test Statistic
Kolmogorov-Smirnov test 0.03517 0.30952

Table 3: Goodness of fit using K-S test.

(a) The force of mortality, µ, is assumed piece-wise constant, taking a com-
mon value across each whole year of age [x, x + 1) similar assumption found in
[Dodd et al.(2018)].

(b) The frailty model considered here is one without reported covariates since only
survival data is available for analysis.

(c) The age at which life assurance policyholders buy term assurance cover is
assumed to be between 24− 65 as given in the real data-set.

The Gamma-EW frailty and NCG-EW frailty models given in equations [14 and
15] respectively are as shown in Figure 2 where x is the future lifetime, σ2 = 0.14,
α = 2.29, γ = 0.7357, λ = 5.683; µ0(x) ∼ EW(2.29, 0.7357, 5.683).

In Figure 2 graduation is done using the Gamma-EW (blue curve) and NCG-EW
(red curve) frailty model both calibrated on the real term assurance mortality
rates. This is compared with the real term assurance mortality rates (black curve).
As shown the Gamma-EW overestimates the hazard rate at all ages compared to
the NCG-EW model. The NCG-W provides a good fit to the actual claims experience
data. The chi-square test Table 2 and Kolmogorov-Smirnov (KS) hypothesis test
Table 3 for overall goodness of fit is significant for the model. The chi-squared
goodness of fit test has p-value greater than 0.01, indicating that the distribution
is a good fit. Similarly, the KS goodness of fit test has p-value greater than 0.01,
indicating that the distribution is a good fit.

4. Discussions and Conclusion

In this article, we compare the gamma frailty mixture with the non-central gamma
mixture applied in [Onchere et al.(2021)] with the aim of improving the baseline
modeling. In particular, the exponentiated exponential and exponentiated Weibull
baselines are considered. Both models are applied to real term assurance mortality
data for comparison purposes. Using Bayesian inference the EW turns out to give
a better fit since the DIC is smallest compared to the EE. As shown in Figure 2
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the Gamma-EW model overestimates the hazard rates at all ages compared to the
NCG-EW model since the hazard curve shifts upwards. The NCG-EW fits well to
the insurers claims experience as shown in the chi-squared goodness of fit test
Table 2 and KS hypothesis test Table 3 that is significant. The conclusion arrived
at is that using the gamma as the frailty distribution may lead to inappropri-
ate term assurance valuations resulting in high prices that negatively impacts
marketability of term contracts. The gamma frailty index is time invariant and
frailty remains constant throughout life. The NCG stochastic process represents
time-varying frailty and is recommended for better term assurance valuations.
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Fig. 1: BGR Diagnostic Plot consistent with convergence and Dynamic Trace Plots
for EW (α, λ, γ) where a = α, l = λ, r = γ
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Fig. 2: Crude mortality rates and frailty hazard functions
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