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Résumé. (Abstract in French) Cet article développe la théorie du processus
Gegenbauer AutoRegressive Fractionally Integrated Seasonal Moving Average
(GARFISMA) avec des innovations à distribution α-stable. Nous établissons ses
conditions de causalité et d’inversibilité. Il s’agit d’un processus de paramètre fini
qui présente une grande variabilité, une mémoire longue, un caractère cyclique et
saisonnier dans les études de données financières, hydrologiques, etc. Nous effec-
tuons quelques simulations pour illustrer le comportement de notre processus.
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Serges Hypolite Arnaud KANGA, : M.Sc,. is preparing a Ph.D. thesis under the
supervision of the second authorat UMRI-38- Mathématiques et Nouvelles Tech-
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1. Introduction

The family of α-stable distributions is ubiquitous in statistical: such distributions
appear as the limit of normalized sums of independent and identically distributed
random variables. Their probability densities exist and are continuous, but they
are not known in closed form, except for Gaussian distributions, Cauchy distribu-
tions, Lévy distribution. Non-Gaussian stable distributions are a model of choice
for real world phenomena exhibiting jumps. Indeed, for 0 ≤ α < 2, their den-
sity exhibit ”heavy tails”, resulting in a power law decay of the probability of ex-
treme events. They have been used extensively in recent years for modeling in do-
mains such that finance. Arthur and David (1996), Arthur and David (2004) and
David (2005) argue that the extreme volatility in Hollywood movie revenues can
be modeled with α-stable distributions. In Biomedicine, Heuvel et al. (2015) and
Heuvel et al. (2018) use α-stable distributions to model proton beams in cancer
treatment. In physics, fluctuation flux for plasma in a controlled fusion experiment
are modeled by a α-stable distributions Yanushkevichiene and Saenko (2017).
Futhermore Bollmann et al. (2017) use α-stable distributions to model network
traffic and more. A stable distribution is characterized by four parameters. We
write

X ∼ Sα (γ, β, µ)
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to indicate that X has a α-stable distribution with the stability index α ∈ ]0; 2],
scale parameter γ ≥ 0, skewness β ∈ [−1; 1] and location parameter µ ∈ R. There are
several parametrizations of stable distributions, each of which having advantages
and drawbacks. The following one, with characteristic function Φ, is probably the
most popular:

Φ (t) =

{
exp

{
−γα |t|α

(
1− iβ (Sign(t)) tanπα

2

)
+ iµt

}
, if α ̸= 1

exp
{
−γ |t|

(
1− i 2πβ (Sign(t)) ln |t|

)
+ iµt

}
, if α = 1,

(1)

where

Sign (t) =


1 if t > 0,

0 if t = 0,

−1 if t < 0.

(2)

We specify that i is complex number such that i2 = −1. The Gaussian case
corresponds to α = 2 and if 0 ≤ α < 2, the distributions have a heavier tail than
Gaussian and do not necessarily have the first and/or second moments. These
distributions are symmetric around zero when β = 0 and µ = 0. Starting from an
empirical data-based approach from diverse fields of application such economic,
finance, hydrology, telecommunication and more. We are confronted with the
phenomenon of long memory. A time series with this property has a slow and
hyperbolically declining autocorrelation function (ACF ) or, equivalently an infinite
spectrum at zero frequency Boutahar et al (2007).

A most popular way to analyze a long memory model is to use AutoRegres-
sive Fractionally Integrated Moving Average (ARFIMA) processes introduced by
Granger et al. (1980) and Hosking et al. (1981). However, the presence of seasonal
and cyclic behaviour cannot be caught by the classical ARFIMA process. Thus,
the methodology for modelling processes with long memory behaviour has been
extended to long memory time series with seasonal components. Recent contribu-
tions related to the seasonal ARFIMA model (hereafter denoted by ARFISMA model)
are Porter-Hudak (1990) or Reisen et al. (2006). But, these models are very lim-
ited, insofar as they consider that the seasonal frequencies are fixed and known.
Therefore, recent years have witnessed the publication of several papers dealing
with long memory processes able to take into account a possible harmonic com-
ponent in the data. Gray et al. (1989) proposed a new class of long memory pro-
cesses, the so-called Gegenbauer AutoRegressive Moving Average (GARMA) mod-
els, which generalizes the class of Seasonal ARFIMA models, insofar as the spec-
tral density of GARMA processes is not necessarily unbounded at the origin, like
ARFIMA models, but anywhere on the interval [0;π]. Giraitis and Leipus (1995)
and, later, Woodward et al. (1998) give an extension of the GARMA model, denoted
the k-factors GARMA model, for which the spectral density is unbounded for a finite
number of k frequencies, denoted Gegenbauer frequencies or G-frequencies, on the
interval [0;π]. This k-factor extension was first suggested in the concluding works of
Gray et al. (1989) and is used by Sadek and Khotanzad (2004) in a network traffic
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simulation. Note that Hassler and Uwe (1994) and Marius and Ooms (1995) pro-
posed two different seasonal long memory models, which are in fact special cases
of the k-factor GARMA model, insofar as the G-frequencies are the seasonal fre-
quencies, which are known. They assume in their theory that the innovations are
Gaussian. However, we realize that this hypothesis is too restrictive, particularly,
in some domains such as finance or telecommunication in which one must take
into account a high variability of the data which is translated by infinite variance.
We propose to replace the Gaussian innovations by the α-stable innovations so
the process obtained and called Gegenbauer ARFISMA-SαS process allow the mod-
elling of long memory data exhibiting seasonal period, cyclical fluctuation and high
variability components. The remainder of this paper is structured as follows. Sec-
tion 2, presented the class of Gegenbauer ARFISMA-SαS model. In Section 3, we
give conditions for causality of the Gegenbauer ARFISMA-SαS process. Section 4 is
dedicated to invertibility of our model. The outline of the simulation study and the
results are given in Section 5.

2. Gegenbauer ARFISMA-SαS process

Hosking et al. (1981), Porter-Hudak (1990) and Ray and Bonnie (1993) among oth-
ers, proposed to use the fractional seasonal difference operator, (1−Bs)

d, where d
is the fractionally differenced component and lies inside the interval ]−0.5; 0.5[. The
parameter s is the seasonal period that is the number of observations per period
(s = 1 for annual data, s = 2 for half-yearly data, s = 4 for quarterly data, s = 12
for monthly data, s = 52 for weekly data) and B denotes the back-shift operator
such that BsXt = Xt−s. In what follows, s is assumed to be even, which is a restric-
tion only of the presentation. The fractional seasonal difference operator may be
expanded as a binomial series, the same is true for the inverse filter:

(1−Bs)
d
=

∞∑
k=0

bkB
ks; (3)

(1−Bs)
−d

=

∞∑
k=0

ukB
ks. (4)

The asymptotic behaviour of the coefficients is given by

bk =
Γ (k − d)

Γ (k + 1)Γ (−d)
∼ k−d−1

Γ (−d)
; uk ∼ k−d−1

Γ (d)
, k → ∞. (5)

Let δk be the unit roots in 1− δs = 0, for all δ ∈ C⋆, that is,

δk = ei
2πk
s , k = 0, 1, . . . , s− 1. (6)

By using the results in Reisen et al. (2006) and Hassler and Uwe (1994)
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(1−Bs)
d
= (1−B)

d
(1 +B)

d

[ s2 ]−1∏
k=1

(1− δkB)
d
(1− δ−kB)

d

= (1−B)
d
(1 +B)

d

[ s2 ]−1∏
k=1

{
1− 2 cos

(
2πk

s

)
B +B2

}d

, (7)

where d denotes long memory parameter and 2πk/s, k = 1, . . . , [s/2] are seasonal
frequencies.

The operator (7) is called rigid filter because the contribution of seasonal oscilla-
tions and of the long-run behaviour to the variance are governed by one common
long memory parameter d. Several economic time series can be adequately de-
scribed by this filter, see for example Caporale et al. (2006) for an application on
US money stock. In order to allow for different long memory parameters across
different seasonal frequencies, Chan and Wei (1988), Hassler and Uwe (1994),
Marius and Ooms (1995), Ferrara and Guégan (2000), Arteche et al. (2000) pro-
posed the Seasonal and Cyclical Long Memory (SCLM ) operator given by:

∆τ(s) (B) = (1−B)
d0 (1 +B)

d
[ s2 ]

[ s2 ]−1∏
k=1

{(
1− eiλk,jB

) (
1− e−iλk,jB

)}dk

= (1−B)
d0 (1 +B)[

s
2 ]
[ s2 ]−1∏
k=1

(
1− 2νk,jB +B2

)dk
, with τ (s) =

(
d0, . . . , d[ s2 ]

)
.

(8)

The long memory parameter

(dk)k∈{0,...,[ s2 ]}

are in ]−0, 5; 0, 5[. The frequencies

λk,j = cos−1 (νk,j)

are such that

λk,j =
2πk

s
+

2πj

n
, for all (k, j) ∈

{
0, . . . ,

[s
2

]}
× {0, . . . ,m} ,

where the bandwidth m is an integer between 1 and n/2, and in pratrice, is less
than n, and for asymptomatic theory, it satisfies at least
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1

m
+

m

n
→ 0, as n → +∞. (9)

Condition (9) implies that the seasonal frequencies(
2πk

s

)
k∈{0,...,[ s2 ]}

belong to the set of harmonic frequencies 2πj/n where j ∈ {0, . . . ,m} . We are espe-
cially interested in the harmonic frequencies around the seasonal frequencies, for
j ∈ {0, . . . ,m},

λ0,j =
2πj

n
, λ1,j =

2π

s
+

2πj

n
. . . , λ[ s2 ],j

= π − 2πj

n
, lim

n→∞
λk,j =

2πk

s
.

The Seasonal and Cyclical Long Memory (SCLM ) filter is defined by convolu-
tion. Any of the factors in (8) may be expanded as a binomial series given by
Anděl et al. (1986):

(
1− eiλk,jB

)d
=

∞∑
l=0

ble
iλk,j lBl (10)

where bl is just the coefficient in (3). This expansion is real-valued for λk,j = 0, π. If
0 < λk,j < π, the real-valued expansion is given by Katayama and Naoya (2000):

∆−τ(s) (B) =

[ s2 ]∏
i=0

(
1− 2νi,jB +B2

)−ωi
=

+∞∑
k=0

πk (ωi, λ)B
k. (11)

The long memory parameters

(ωi)i∈{0,...,[ s2 ]}

are such that

ω0 =
d0
2
, ω[ s2 ]

=
d[ s2 ]

2
, ωi = di∈{1,2,...,[ s2 ]−1}.

For now on, we set

ω := ωi∈{0,...,[ s2 ]}

and real coefficients
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(πk (ω, λ))k∈N

in (11) are such that:π0 (ω, λ) = 1,

πk (ω, λ) =
2

k

∑k−1
l=0

∑[ s2 ]
i=1 ωicos [(k − l) νi,j ]πl (ω, λ) , for all k ≥ 1.

(12)

Definition 1. Let (ϵt)t∈Z be sequence of independent and identically distributed i.i.d
symmetric α−stable (SαS) random variables. (Xt)t∈Z is said to be the Gegenbauer
ARFISMA-SαS process, if it is the unique solution to the following equation:

Φ (B) Φs (B
s)∆τ(s) (B)Xt = Θ(B)Θs (B

s) ϵt, (13)
where B is the backward operator and s is the seasonal parameter. The Seasonal-

Cyclical Long Memory (SCLM) operator ∆τ(s) (B) is given in (8). Φ (.) and Θ(.) are the
well known non-seasonal p-order autoregressive and q-order moving average poly-
nomials with real coefficients defined by:{

Φ (B) = 1−
∑p

j=1 ϕjB
j ,

Θ(B) = 1 +
∑q

j=1 θjB
j .

(14)

The polynomials Φs (.) and Θs (.) are respectively the seasonal P -order autoregressive
polynomial and the seasonal Q-order moving average polynomial which are defined
by: {

Φs (B
s) = 1−

∑P
j=1 ΦjsB

js,

Θs (B
s) = 1 +

∑Q
j=1 ΘjsB

js.
(15)

Remark 1. The Gegenbauer ARFISMA-SαS model enables the modeling of many
features of financial market returns. Since it is a direct generalization of the
ARFISMA-SαS model of Ndongo et al. (2016), it contains several extensions:

▷ The linear processes with infinite variance studied by
Fama and Eugene (1965) , Stuck and Kleiner (1974) or Brockwell et al. (2006)
when P = Q = 0 and dk = 0 for all k ∈ {0, 1, 2, . . . , [s/2]} .

▷ The ARMA-SαS, if P = Q = 0, dk = 0, ∀k ∈ {0, . . . , [s/2]}, Mikosch et al. (1995).

▷ The Fractional ARIMA-SαS, if P = Q = 0, d0 ∈ R, dk = 0, for all k ∈ {1, 2, . . . , [s/2]},
introduced by Kokoszka et al. (1995).

3. Causality of the Gegenbauer ARFISMA-SαS process

Following equation (11), the Gegenbauer ARFISMA-SαS process defined in (13) can
be rewritten as
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Φ (B) Φs (B
s)Xt = Θ(B)Θs (B

s)

[ s2 ]∏
i=0

(
1− 2νi,jB +B2

)−ωi
ϵt, (16)

= Θ(B)Θs (B
s)

+∞∑
k=0

πk (ω, ν)B
kϵt, (17)

= Θ(B)Θs (B
s)

+∞∑
k=0

πk (ω, λ) ϵt−k. (18)

Let the polynomials Φ (.) and Φs (.) be such that all its roots lie outside the unit
circle. To show that Gegenbauer ARFISMA-SαS time series in (11) has a unique
causal moving average solution, we need to define cyclical seasonal coefficients
(ck)k∈N by the following equation:

Θ(B)Θs (B
s)

Φ (B) Φs (Bs)
∆−τ(s) (B) =

Θ (B)Θs (B
s)

Φ (B) Φs (Bs)
×

+∞∑
k=0

πk (ω, ν)B
k =

+∞∑
k=0

ckB
k. (19)

Φs (B
s) Φ (B)

+∞∑
k=0

ckB
k = Θs (B

s)Θ (B)

+∞∑
k=0

πk (ω, ν)B
k. (20)

We rate

A (B) = Φs (B
s) Φ (B)

+∞∑
k=0

ckB
k, (21)

B (B) = Θs (B
s)Θ (B)

+∞∑
k=0

πk (ω, ν)B
k. (22)

Lemma 1. Let (ck)k∈N be a sequence of real numbers. If (ck)k∈N are cyclical seasonal
coefficients of s period, then for all z ∈ C, with |z| < 1

+∞∑
k=0

ckz
k = ϱs

s−1∑
j=0

cjz
j , (23)

where ϱs ∈ C− {0} and |ϱs| < 1.
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Proof (Proof of Lemma 1). For all z ∈ C such that |z| < 1,

+∞∑
k=0

ckz
k =

s−1∑
j=0

cjz
j + c0

+∞∑
k=1

zks + c1z

∞∑
k=1

zks + c2z
2
+∞∑
k=1

zks + . . .+ cs−1z
s−1

+∞∑
k=1

zks (24)

=

s−1∑
j=0

cjz
j +

+∞∑
k=1

zks
(
c0 + c1z + c2z

2 + . . .+ cs−1z
s−1
)

(25)

= ϱs

s−1∑
j=0

cjz
j and ϱs =

(
1 +

+∞∑
k=1

zks

)
. (26)

Since, the geometric series 1+zs+z2s+z3s+z4s+ . . . converges if and only if |z| < 1,
then

ϱs =

+∞∑
k=0

zks =
1

1− zs
, |z| < 1. (27)

This completes the proof of Lemma 1.

According equation (20) expanding and by using polynomial identification, we ob-
tain with Lemma 1 an explicit formula for the coefficients (ck)k∈N.

▷ For k ∈ {0, . . . , s− 1} ∪ {(Q+ 1) s, . . .},

ck −
min(k,p)∑

i=1

ϕick−i = πk (ω, ν) +

min(k,q)∑
i=1

θiπk−i (ω, ν) . (28)

▷ For k ∈ {s, . . . , (P + 1) s− 1},

ck −
min(k,p)∑

i=1

ϕick−i + γ̃k − α̃k = πk (ω, ν) +

min(k,q)∑
i=1

θiπk−i (ω, ν) + ζ̃k + υ̃k. (29)

▷ For k ∈ {(P + 1) s, . . . , (Q+ 1)s− 1},

ck −
min(k,p)∑

i=1

ϕick−i = πk (ω, ν) +

min(k,q)∑
i=1

θiπk−i (ω, ν) + ζ̃k + υ̃k, (30)

and

(a) for 1 ≤ i ≤ P ,
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{
α̃is+j =

∑i
k=1 Φksc(i−k)s+j ,

γ̃is+j = Φis

∑j
k=1 ϕkcj−k +

(∑i−1
l=1 Φls

)∑p
k=1 ϕkc(i−l)s+j−k,

(31)

(b) for 1 ≤ i ≤ Q,

{
ζ̃is+j =

∑i
k=1 Θksπ(i−k)s+j (ω, ν) ,

υ̃is+j = Θis

∑j
k=1 θkπj−k (ω, ν) +

∑i−1
l=1 Θls

∑q
k=1 θkπ(i−l)s+j−k (ω, ν) .

(32)

Let consider the following assumptions:

(A1) : For all (k, j) ∈ {0, 1, . . . , [s/2]} × {1, . . . ,m}, where m is finite and 1 < α ≤ 2,

ωk <


1− 1

α
, if |νk,j | ≠ 1

1

2

(
1− 1

α

)
, if |νk,j | = 1.

(33)

(A2) : For all (k, j) ∈ {0, 1, . . . , [s/2]} × {1, . . . ,m}, where m is an integer and 1 < α ≤ 2,

ωk >


−1 +

1

α
, if |νk,j | ≠ 1

−1

2

(
1− 1

α

)
, if |νk,j | = 1.

(34)

(A3) : The seasonal polynomials and non-seasonal autoregressive in (14) and (15) of
the Gegenbauer ARFISMA-SαS process in (13) have no roots in the unit disk.

(A4) : The seasonal polynomials and non-seasonal moving average in (14) and (15) of
the Gegenbauer ARFISMA-SαS model in (13) have no roots in the unit disk.

(A5) : The sequence of real numbers {ck}k∈N is such that
∑+∞

k=0 |ck|
δ
< ∞, where δ ∈

]0;α[ ∩ [0; 1] .

Remark 2. The assumptions (A1) and (A2) ensure convergence of the power se-
ries in (11), see Katayama and Naoya (2000). We use assumptions (A3) and (A4) to
guarantee causality and inversibility of our process defined in (13). The assumption
(A5) allows to establish the absolute convergence of the series

∑+∞
k=0 ckϵt−k.

Theorem 1. Under the assumptions (A1),(A3) and (A5), the process defined by (13)
has a unique causal moving average representation given by:

Xt =

+∞∑
k=0

ckϵt−k, (35)

where coefficients (ck)k∈N are defined by (28) , (29) , (30) , (31) and (32).
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Proof (Proof of Theorem 1). According to assumptions (A1), (A3) and (A5), the
power series

+∞∑
k=0

ckϵt−k

and

+∞∑
k=0

πk (ω, ν) ϵt−k

almost surely converge. Assume that the set

Λ0 =

{
λ : for each k,

+∞∑
k=0

ckϵt−k (λ) and
+∞∑
k=0

πk (ω, ν) ϵt−k (λ) converge

}
(36)

has probability one. Fix λ0 ∈ Λ0 and denote, for brevity, ϵk = ϵk (λ0) ,

Xt :=

+∞∑
k=0

ckϵt−k (λ0)

and

Yt :=

+∞∑
k=0

πk (ω, ν) ϵt−k (λ0) .

We must show that:

Φs (B
s) Φ (B)Xt = Θs (B

s)Θ (B)Yt. (37)

Using the polynomial A (.) in (16) and without loss of generality, P ≤ Q, then

Φs (B
s) Φ (B)Xt =

(
1−

P∑
i=1

ΦiB
is

)1−
p∑

j=1

ϕjB
j

 +∞∑
k=0

ckϵt−k, (38)

=

+∞∑
k=0

ckϵt−k −

 p∑
j=1

ϕjB
j

(+∞∑
k=0

ckϵt−k

)
−

(
P∑
i=1

ΦiB
is

)(
+∞∑
k=0

ckϵt−k

)

+

(
P∑
i=1

ΦiB
is

) p∑
j=1

ϕjB
j

(+∞∑
k=0

ckϵt−k

)
. (39)
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By lemma 1, we have,

Φs (B
s) Φ (B)Xt =

s−1∑
k=0

ck −
min(k;p)∑

j=1

ϕkck−j

 ϵt−k + ϱs

P∑
i=1

s−1∑
k=0

(γ̃is+k − α̃is+k) ϵt−is−k

+

+∞∑
i=1

s−1∑
k=0

cis+k −
min(is+k;p)∑

j=1

ϕjcis+k−j

 ϵt−is−k, (40)

=

s−1∑
k=0

ck −
min(k;p)∑

j=1

ϕjck−j

 ϵt−k

+ ϱs

P∑
i=1

s−1∑
k=0

cis+k −
min(is+k,p)∑

j=1

ϕjcis+k−j + γ̃is+k − α̃is+k

 ϵt−is−k

+

+∞∑
i=P+1

s−1∑
k=0

cis+k −
min(is+k;p)∑

j=1

ϕjcis+k−j

 ϵt−is−k, (41)

where α̃is+k and γ̃is+k are defined by (31). Using (28), (29), (30) and by identification
to analogous development of the polynomial B (.) given by (22), we obtain:

Φs (B
s) Φ (B)Xt =

s−1∑
k=0

πk (ω, ν) +

min(k,q)∑
j=1

θjπk−j (ω, ν)

 ϵt−k

+ ϱs

Q∑
λ=1

s−1∑
k=0

(
ζ̃is+k + υ̃is+k

)
ϵt−is−k

+

+∞∑
i=1

s−1∑
k=0

πis+k (ω, ν) +

min(is+k,q)∑
j=1

θjπis+k−j (ω, ν)

 ϵt−is−k, (42)

where ζ̃is+k and υ̃is+k are given by (32). So

Φs (B
s) Φ (B)Xt =

+∞∑
k=0

πk (ω, ν) ϵt−k

+

(
Q∑
i=1

ΘisB
is

)(
+∞∑
k=0

πk (ω, ν) ϵt−k

)

+

 q∑
j=1

θjB
j

(+∞∑
k=0

πk (ω, ν) ϵt−k

)
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+

(
Q∑
i=1

ΘisB
is

) q∑
j=1

θjB
j

(+∞∑
k=0

πk (ω, ν) ϵt−k

)
, (43)

= Θs (B
s)Θ (B)Yt. (44)

This concludes the proof.

4. Invertibility of the Gegenbauer ARFISMA symmetric stable process

The proof of invertibility theorem of the process given by equation (13), requires the
development of sequence of real coefficients (c̃k)k≥0 . Thus, under the assumption
(A4), we get:

Φ (B) Φs (B
s)

Θ (B)Θs (Bs)

[ s2 ]∏
k=0

(
1− 2νk,jB +B2

)ωk
=

+∞∑
k=0

c̃kB
k, (45)

and

▷ for k ∈ {0, . . . , s− 1} ∪ {(Q+ 1) s, . . .}

c̃k +

min(k,q)∑
i=1

θic̃k−i = φk (ω, ν)−
min(k,p)∑

i=1

ϕiφk−i (ω, ν) , (46)

▷ for k ∈ {s, . . . , (P + 1) s− 1}

c̃k +

min(k,q)∑
i=1

θic̃k−i + ϑ̃k + ξ̃k = φk (ω, ν)−
min(k,p)∑

i=1

ϕiφk−i (ω, ν) + δ̃k − τ̃k, (47)

▷ for k ∈ {(P + 1) s, . . . , (Q+ 1)s− 1}

c̃k +

min(k,q)∑
i=1

θic̃k−i + ϑ̃k + ξ̃k = φk (ω, ν)−
min(k,p)∑

i=1

ϕiφk−i (ω, ν) . (48)

The coefficients (φk (ω, ν))k≥0 are such that φk (ω, ν) = πk (−ω, ν). The quantities ϑ̃k,
ξ̃k, δ̃k, τ̃k are correspondingly defined by:

(a) for 1 ≤ i ≤ P ,

{
τ̃is+j =

∑i
k=1 Φksφ(i−k)s+j (ω, ν) ,

δ̃is+j = Φis

∑j
k=1 ϕkφj−k (ω, ν) +

∑i−1
l=1 Φls

∑p
k=1 ϕkφ(i−l)s+j−k (ω, ν) ,

(49)
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(b) for 1 ≤ i ≤ Q,

{
ξ̃is+j =

∑i
k=1 Θksc̃(i−k)s+j ,

ϑ̃is+j = Θis

∑j
k=1 θk c̃j−k +

∑i−1
l=1 Θls

∑q
k=1 θk c̃(i−l)s+j−k.

(50)

Theorem 2. Under assumptions (A2), (A4) and (A5), the process defined by (11) has
a unique autoregressive representation given by:

ϵt =

+∞∑
k=0

c̃kXt−k, (51)

where the coefficients (c̃k)k∈N are defined by (46) , (47), (48), (49) and (50).

Proof (Proof of Theorem .2). The random variables (ϵt)t∈Z which are independent
and identically distributed follow the SαS law. So the process (Xt)t∈Z also follows
SαS distribution. Then

E

[
+∞∑
k=0

|c̃kXt−k|

]
=

+∞∑
k=0

|c̃k|E [|Xt−k|] , (52)

=

+∞∑
k=0

|c̃k|E [|X1|] . (53)

Under the assumption (A4) ,

E [|X1|] < ∞, E

[
+∞∑
k=0

|c̃kXt−k|

]
< ∞

and we obtain

+∞∑
k=0

|c̃k| < ∞.

Let 
κ (B) = C (B) =

Θ (B)Θs (B
s)

Φ (B) Φs (Bs)

∏[ s2 ]
i=0

(
1− 2νi,jB +B2

)−ωi
,

η (B) = C−1 (B) =
Φ (B) Φs (B

s)

Θ (B)Θs (Bs)

∏[ s2 ]
i=0

(
1− 2νi,jB +B2

)ωi
.

(54)
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According to Theorem 2.3 in Kokoszka et al. (1995), there is

A (B) ϵt =

∞∑
j=0

ajϵt−k,

where

aj =

j∑
k=0

ck c̃j−k

for all j ∈ N, such that

κ (B) [η (B) ϵt] = A (B) ϵt = η (B) [κ (B) ϵt] , almost surely.

Since

A (B) ϵt = C (B)C−1 (B) ϵt = ϵt

and

κ (B) [η (B) ϵt] = C (B)
[
C−1 (B) ϵt

]
,

= C (B)Xt, (55)

=

+∞∑
k=0

c̃kXt−k, almost surely, (56)

then

ϵt =

+∞∑
k=0

c̃kXt−k, almost surely.

5. Simulation study

In this section, we perform some simulations to illustrate the behaviour of the
process. We first describe a way to generate Gegenbauer ARFISMA-SαS process
data and then examine features such as long memory, seasonality, cyclical and
high variability in the simulated data. Because there is no known technique for
generating an exact Gegenbauer ARFISMA in the stable case, we will approximate
the infinite moving average (35) as follows, where M is finite:

Xt := XM (t) ≈
M∑
k=0

ckϵt−k, t = 0, 1, 2, . . . (57)
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where (ϵk)k∈N ∼SαS and (ck)k∈N are given by (28), (29), (30), (31) and (32).

We simulate a Gegenbauer ARFISMA-SαS process,

Xt = (1−B)
d0 (1 +B)

d s
2

( s
2 )−1∏
k=1

{(
1− eiλk,jB

) (
1− e−iλk,jB

)}dk
ϵt. (58)

The frequencies

λk,j = cos−1 (νk,j) ,

such that

λk,j =
2πk

s
+

2πj

n
, for all (k, j) ∈

{
0, . . . ,

s

2

}
× {0, . . . ,m} ,

where m is finite. The values of the long memory parameters and frequencies are
chosen according assumption (A1) in Theorem 1. Thus

ωk < 1− 1

α
if |νk,j | ≠ 1

and

ωk <
1

2

(
1− 1

α

)
if |νk,j | = 1.

We consider sample sizes n = 30000, the stability index α = 1.6, and seasonal
periods s = 2, s = 4 and s = 6. In short, all the parameters chosen for our process
are recorded in the table below.
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Seasonal parameter s (νk,j)j (ωk)k∈{0,1,...,[ s2 ]}

s = 2

{
ν0,j = 0.81

ν1,j = 0.95

{
ω0 = 0.19

ω1 = 0.15

s = 4


ν0,j = 0.80

ν1,j = 0.95

ν2,j = 0.60


ω0 = 0.31

ω1 = 0.33

ω2 = 0.32

s = 6


ω0,j = 0.80

ω1,j = 0.95

ω2,j = 0.60

ω3,j = 0.50


ω0 = 0.30

ω1 = 0.33

ω2 = 0.32

ω3 = 0.31

Table 1: Table of Parameters

The time series plot showing evidence of heavy tails (great variability) are shown
in graphs 1(a); 2(a) and 3(a). We observe a great variability in the variance of the
process. When heavy tails are present as noted above, the variances are infinite
and the following heavy tailed modification of the sample autocorrelation function
is more appropriate:

ρ̂ (h) =

∑N−|h|
i=1 XiXi+h∑n

i=1 X
2
i

. (59)

(a) (b) (c) (d)

Fig. 1: (a): Trajectory, (b): Autocorrelation function, (c): Empirical variance test and
(d): Normalized periodogram for s = 2 and α = 1.6.

Looking figures 1(b); 2(b) and 3(b), we see that in a finite sample, the speed of
convergence of ρ̂ (h) towards 0 is very slow as h → ∞. To confirm the high variability,
we have performed the test for infinite variance, by the empirical variance test. One
of the oldest tests for determining whether data has infinite variance is the trick
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(a) (b) (c) (d)

Fig. 2: (a): Trajectory, (b): Autocorrelation function, (c): Empirical variance test and
(d): Normalized periodogram for s = 4 and α = 1.6.

(a) (b) (c) (d)

Fig. 3: (a): Trajectory, (b): Autocorrelation function, (c): Empirical variance test and
(d): Normalized periodogram for s = 6 and α = 1.6.

of plotting the sample variance S2
n based on the first n observations, as a function

of n. If the data comes from process with finite variance, S2
n should converge to

finite value. Otherwise, it should diverge as n grows and the graph typically shows
large jumps. We notice lack of convergence of the empirical variance plot for the
data in 1(c), 2(c) and 3(c) and the steep rise of the variance of the delays may
be considered as tending towards infinity. After observing the periodogram plot
in 1(d); 2(d) and 3(d), we note that each seasonal peak rises at its own seasonal
frequency. Furthermore, the number of significant peaks emerging from the
periodogram plot indicates the type of seasonality with which we are confronted.

Acknowledgment. The authors acknowledge the Associate Editor and anonymous
reviewers for their helpful comments and suggestions that led to an improved ver-
sion of this paper.

Journal home page: http://www.jafristat.net, www.projecteuclid.org/euclid.as,
www.ajol.info/afst



F.A.M. Keita, O. Hili S.H.A. Kanga, Afrika Statistika, Vol. 16 (3), 2021, pages 2789 - 2808.
Infinite Variance Stable Gegenbaeur Arfisma Models. 2807

References

Arthur D.V and David W. Motion picture profit, the stable Paretian hypothesis, and the curse
of the superstar. Journal of Economic Dynamics and Control, 28(6):1035-1057, March
2004.

Bollmann, Chad and Tummala, Murali and McEachen, John. Representation of positive
alpha-stable network traffic through levy mixtures. 2017 51st Asilomar Conference on
Signals, Systems, and Computers, 1460-1464, March 2017.

. Yanushkevichiene, Olga and Saenko, Viacheslav. Estimation of the characteristic exponent
of stable laws. Lith Math J, 57(2):266-281, April 2017.

Heuvel F.V.D, F and Hackett, S and Fiorini, F and Taylor, C and Darby, S and Vallis, K.
Robustness Analysis of Proton Breast Treatments Using An Alpha-Stable Distribution
Parameterization. Med. Phys., 42 :3526-3526, June 2015.

Heuvel F.V.D, George B, Schreuder N, and Fiorini F. Using stable distributions to character-
ize proton pencil beams. Med. Phys., 45(5):2278-2288, May 2018.

Arthur D.V and David W. Bose-Einstein Dynamics and Adaptive Contracting in the Motion
Picture Industry. The Economic Journal, 106(439):1493, November 1996.

David.W. Modeling Movie Success When Nobody Knows Anything :Conditional Stable-
Distribution Analysis Of Film Returns. J Cult Econ, 29(3):177–190, August 2005.

Boutahar, Mohamed and Marimoutou, Vl̂ayoudom and Nouira, Lei̋la. Estimation Methods
of the Long Memory Parameter: Monte Carlo Analysis and ApplicationJournal of Applied
Statistics, 34(3):261–301, April 2007.
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