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Abstract. Data on the demand for medical care is usually measured by a number
of different counts. These count data are most often correlated and subject to high
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can jointly affect several utilization measures. In this paper, the zero-inflated bi-
variate Poisson regression model (ZIBP) was used to analyze health-care utilization
data. First, the asymptotic properties of the maximum likelihood estimator (MLE)
of this model were investigated theoretically. Then, a simulation study is conducted
to evaluate the behaviour of the estimator in finite samples. Finally, an application
of the ZIBP model to health care demand data is provided as an illustration.
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Résumé. (Abstract in French) Les données sur la demande de soins médicaux
sont généralement mesurées au moyen d’un certain nombre de comptes différents.
Ces données de comptage sont le plus souvent corrélées et sujettes à de fortes pro-
portions de zéros. Cependant, l’excès de zéros et la dépendance entre ces données
peuvent affecter conjointement plusieurs de ces mesures d’utilisation. Dans cet
article, le modèle de régression de Poisson bivarié à inflation de zéros (ZIBP) est
utilisé pour analyser les données d’utilisation des soins de santé. Tout d’abord, les
propriétés asymptotiques de l’estimateur du maximum de vraisemblance (EMV) de
ce modèle ont été étudiées sur le plan théorique. Ensuite, une étude de simulation
est réalisée pour évaluer le comportement de l’estimateur dans des échantillons
finis. Enfin, une application du modèle ZIBP à des données de demandes de soins
de santé est fournie à titre d’illustration.
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Nouvelles Technologies de l’Information, Institut National Polytechnique Félix
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Jean-François Dupuy, Ph.D., is a Full Professor of Statistics, Institut de recherche
mathématique de Rennes (IRMAR), INSA de Rennes.

1. Introduction

Bivariate count models are used in situations where two dependent count vari-
ables are correlated and need to be jointly modeled. Bivariate count data are
observed in many areas including marketing (number of purchases of different
products), medical research (the number of seizures before and after treatment),
epidemiology (incidents of different diseases in a series of districts), accident
analysis (number of accidents in a site before and after infrastructure changes),
econometrics (number of voluntary and involuntary job changes), sports (the num-
ber of goals scored by each one of the two opponent teams in soccer), just to name
a few. In most cases, bivariate count data are modeled by bivariate Poisson models.

However, in many applications, the count data contain an excess of zeros, that
is, a number of zeros that cannot be explained by standard models. A large
number of statistical tools have been developed to solve this problem, such as
zero-inflation regression models. These models account for excess zeros in count
data by mixing a degenerate distribution with point mass of one at zero with a
standard count regression model (Poisson, binomial or negative binomial when the
response variable is univariate and bivariate Poisson, bivariate negative binomial
when the response variables are bivariate, etc.). Several works have been carried
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out on zero-inflated univariate regression models, such as Lambert (1992),
Dietz and Böhning (2000), Li (2011), Lim et al. (2014) and Monod (2014)
for the ZIP (Zero Inflated Poisson) regression model, Ridout et al. (2001),
Moghimbeigi et al. (2008), Mwalili et al. (2008), Garay et al. (2011) for ZINB (zero-
inflated negative binomial) model, and Hall (2000), Hall and Berenhaut (2002),
Diallo et al. (2017), Diallo et al. (2019) for the ZIB (zero-inflated binomial) re-
gression model. But the ZIP, ZIB and ZINB models are not adapted to bivariate
responses. Thus, several models have been proposed for bivariate count data with
zero-inflation. For example, for zero-inflated bivariate negative binomial models,
see Wang et al. (2003) and Faroughi and Ismail (2016), and for bivariate Poisson
models, Li et al. (1999), Karlis and Ntzoufras (2003), Al Muhayfith et al. (2016),
Yang et al. (2016), among others. In this paper, we consider the bivariate Poisson
regression model with zero-inflation, which allows to model the correlation between
the response variables and to handle a large number of observations (0, 0) in the
data set. Since its introduction by Li et al. (1999), the ZIBP (zero-inflated bivariate
Poisson) model has been applied in a variety of contexts including marketing,
epidemiology, accident analysis, medical research, sports, econometrics, etc.
Hence, the consider estimation in ZIBP model. This work is also motivated by
data from health economics. In health econometrics, health service utilization
data are most often examined. Deb and Trivedi (2005) analyzed health service
utilization data for individuals over age 65. These data from the National Medical
Expenditure Survey (NMES) conducted in 1987 and 1988 and known as the
NMES1988. These data contain measures of health care utilization such as
the number of visits to a non-doctor health care professional (such as optician,
physiotherapist, ...) in a office setting, the number of visits to a non-doctor in
an outpatient setting. The proportions of zeros are high in these measures of
health service use. This means that during the study period, these corresponding
health services were not used by a large number of people. In addition, according
to Gurmu and Elder (2000) and Wang et al. (2003), the health-care utilization
measures are dependent. Therefore, a univariate analysis of these data would
not be appropriate. To handle this problem, Diallo et al. (2018) proposed the ZIM
(zero-inflated multinomial) regression model and applied it to the NMES1988 data.
However, the ZIM regression model is restrictive, it is only suitable for bounded
components.Thus, in this work, we are interested in the ZIBP model, which takes
into account all the individuals in the population and takes into account the
correlation between the health care demand data studied. First, we are interested
in asymptotic properties in the ZIBP model. Second, an application of the ZIBP
model allowed an assessment of the demand for medical care and the study of
health care renunciation.

The outline of this paper is as follows. In Section 2, we present the ZIBP model and
describe the maximum likelihood estimator. In Section 3, we first give some useful
notations, then we indicate some regularity conditions and finally we establish the
consistency and asymptotic normality of the MLE in the ZIBP regression. Section
4 presents the results of a simulation study. Section 5 describes an application of
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ZIBP model to the analysis of health-care utilization by elderlies in United States.
To conclude, a discussion and some perspectives are provided in Section 6.

2. The zero-inflated bivariate Poisson regression model

Consider random variables Z1, Z2 and U which follow independent Poisson dis-
tributions with parameters λ1, λ2 and µ respectively. Then the random variables
Y1 = Z1 + U and Y2 = Z2 + U follow jointly a bivariate Poisson distribution
BP(λ1, λ2, µ). Let y1 ∧ y2 := min(y1, y2). The joint distribution of the bivariate Poisson
vector (Y1, Y2) is given by

P(Y1 = y1, Y2 = y2) = P(Z1 + U = y1, Z2 + U = y2)

=

y1∧y2∑
s=0

P(U = s, Z1 = y1 − s, Z2 = y2 − s)

=

y1∧y2∑
s=0

P(U = s)P(Z1 = y1 − s)P (Z2 = y2 − s)

= e−µ−λ1−λ2ϕ(y1, y2)

where

ϕ(y1, y2) =

y1∧y2∑
s=0

µs

s!

λy1−s1

(y1 − s)!
λy2−s2

(y2 − s)!
.

Using the independence of Z1, Z2 and U , one has cov(Y1, Y2) = cov(Z1 +U,Z2 +U) =
var(U) = µ. Hence µ is a measure of dependence between Y1 and Y2. When µ =0,
the bivariate Poisson distribution reduces to the product of two independent
Poisson distributions (referred to as the double-Poisson distribution).

It is well known that univariate Poisson distributions are not appropriate for
modeling counts with an excess of zeros. In such cases, zero-inflated regres-
sion models are most often suggested, see Lambert (1992). The same applies
to the bivariate case when the data contain a high proportion of bivariate
couples (0, 0), see Li et al. (1999), Wang et al. (2003). The zero-inflated bivariate
Poisson model was introduced by Li et al. (1999). Since then, this model was
used by Wang et al. (2003) to analyze two types of occupational injuries, by
Bermúdez (2009) in the field of automobile insurance, and by Yang et al. (2016)
to model bivariate data in health economics, among others. According to
Li et al. (1999), a ZIBP model is a mixture of a bivariate Poisson distribution and a
point mass in (0, 0). Thus, the ZIBP model is specified by the probability function:

fZIBP (y1, y2;π, λ1, λ2, µ) =

{
π + (1− π) exp(−µ− λ1 − λ2), (y1, y2) = (0, 0)

(1− π) exp(−µ− λ1 − λ2)ϕ(y1, y2), (y1, y2) 6= (0, 0),
(1)
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where 0 < π < 1. When covariates are present, the model (1) can be extended to
a regression model. For this purpose, for each i = 1, ..., n, we consider respectively
Wi = (Wi1, ...,Wiq)

> and Xi = (Xi1, ..., Xip)
> random vectors of covariates where

Wi1 = Xi1 = 1. The mixing probability πi is usually modeled by a logistic regression,
that is:

logit(πi) = γ>Wi (2)

and the Poisson parameters λ1i, λ2i and µi are modeled as:

log(λ1i) = β>1 Xi, log(λ2i) = β>2 Xi, and log(µ) = η (3)

where γ ∈ Rq, β1, β2 ∈ Rp and η ∈ R are unknown regression parameters and
the symbol > denotes the transpose operator. One could also model µ as a
function of the covariates, for example by log(µ) = β>3 Xi. This generalisation is
of no theoretical interest (it only makes the calculations more ”painful”), we also
think that in terms of interpretation, it is more relevant to have a ”fixed” covariance.

Let θ = (γ>, β>1 , β
>
2 , η)> denote the vector k-dimensional (k = 2p+ q + 1) parameters

vector of the ZIBP model (1)-(2)-(3). The likelihood of θ, based on a sample of n
independent observations (Y1i, Y2i,Xi,Wi), i = 1, . . . , n, is :

Ln(θ) =

n∏
i=1

{(
πi + (1− πi)fBP (0, 0, λ1i, λ2i, µ)

)ai
×
(

(1− πi)fBP (Y1i, Y2i, λ1i, λ2i, µ)
)1−ai}

,

=

n∏
i=1

{(
eγ

>Wi + e−(e
η+eβ

>
1 Xi+eβ

>
2 Xi )

1 + eγ>Wi

)ai( 1

1 + eγ>Wi

e−(e
η+eβ

>
1 Xi+eβ

>
2 Xi ) ×

Y1i∧Y2i∑
s=0

(eη)s

s!

(eβ
>
1 Xi)Y1i−s

(Y1i − s)!
(eβ

>
2 Xi)Y2i−s

(Y2i − s)!

)1−ai
}
,

where ai := 1(Y1i=0,Y2i=0). Hence, the log-likelihood ``n(θ) = log
(
Ln(θ)

)
, is given by

``n(θ) =

n∑
i=1

{
ai log

(
eγ

>Wi + hi(θ)
)
− (1− ai)

(
eη + eβ

>
1 Xi + eβ

>
2 Xi

)
+(1− ai) log

( y1i∧y2i∑
s=0

(eη)s

s!

(eβ
>
1 Xi)y1i−s

(y1i − s)!
(eβ

>
2 Xi)y2i−s

(y2i − s)!

)
− log(1 + eγ

>Wi)

}
,

``n(θ) :=

n∑
i=1

`i(θ),

where hi(θ) = e−(e
η+eβ

>
1 Xi+eβ

>
2 Xi ). The maximum likelihood estimator θ̂n =(

γ̂>, β̂>1 , β̂
>
2 , η̂

)
of θ is the solution of the k-dimensional score equation
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Un(θ) =
1√
n

∂``n(θ)

∂θ
=

1√
n

n∑
i=1

∂`i(θ)

∂θ
=

1√
n

n∑
i=1

˙̀
i(θ) = 0. (4)

The components of the gradient vector are of the following form

∂`i(θ)

∂γj
=

(
ai

eγ
>Wi

eγ
>
j Wi + hi(θ)

− eγ
>
j Wi

1 + eγ
>
j Wi

)
Wij ,

∂`i(θ)

∂β1,`
=

(
− ai

eβ
>
1,`Xihi(θ)

eγ>Wi + hi(θ)
− (1− ai)eβ

>
1,`Xi + (1− ai)

Y1i∧Y2i∑
s=0

(Y1i − s)gi(s, θ)

Y1i∧Y2i∑
s=0

gi(s, θ)

)
Xi`,

∂`i(θ)

∂β2,`
=

(
− ai

eβ
>
2,`Xihi(θ)

eγ>Wi + hi(θ)
− (1− ai)eβ

>
2,`Xi + (1− ai)

Y1i∧Y2i∑
s=0

(Y2i − s)gi(s, θ)

Y1i∧Y2i∑
s=0

gi(s, θ)

)
Xi`,

and

∂`i(θ)

∂η
= −ai

eηhi(θ)

eγ>Wi + hi(θ)
− (1− ai)eη + (1− ai)

Y1i∧Y2i∑
s=0

sgi(s, θ)

Y1i∧Y2i∑
s=0

gi(s, θ)

,

with

gi(s, θ) =
(eη)s

s!
× (eβ

>
1 Xi)Y1i−s

(Y1i − s)!
× (eβ

>
2 Xi)Y2i−s

(Y2i − s)!
,

for every i = 1, . . . , n, j = 1, . . . , q and ` = 1, . . . , p. Furthermore, the estimation
equation (4) can be solved by a Newton-Raphson algorithm.
In the next section, we establish the consistency and asymptotic normality of θ̂n.

3. Asymptotic properties of the MLE

In this section, we first give some additional notations that we use in the rest of the
work. Then we state some regularity conditions. Finally, we present the asymptotic
properties of the estimator θ̂n of θ.
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3.1. Notations and regularity assumptions

For every i = 1, . . . , n, let

Ai(θ) = ai
eγ

>Wi

eγ>Wi + hi(θ)
− eγ

>Wi

1 + eγ>Wi
,

B1,i(θ) = −ai
eβ

>
1 Xihi(θ)

eγ>Wi + hi(θ)
− (1− ai)eβ

>
1 Xi + (1− ai)

Y1i∧Y2i∑
s=0

(Y1i − s)gi(s, θ)

Y1i∧Y2i∑
s=0

gi(s, θ)

,

B2,i(θ) = −ai
eβ

>
2 Xihi(θ)

eγ>Wi + hi(θ)
− (1− ai)eβ

>
2 Xi + (1− ai)

Y1i∧Y2i∑
s=0

(Y2i − s)gi(s, θ)

Y1i∧Y2i∑
s=0

gi(s, θ)

,

and

Ci(θ) = −ai
eηhi(θ)

eγ>Wi + hi(θ)
− (1− ai)eη + (1− ai)

Y1i∧Y2i∑
s=0

sgi(s, θ)

Y1i∧Y2i∑
s=0

gi(s, θ)

.

Now, we state the regularity assumptions under which we will establish the asymp-
totic properties of the maximum likelihood estimator θ̂n.

(A1) The true parameter value θ0 := (γ>0 , β
>
1,0, β

>
2,0, η0)> lies in the interior of some

known compact set of Θ ⊂ Rk.
(A2) E

[(
˙̀
i(θ)

)(
˙̀
i(θ)

)>] is positive definite in a neighborhood of θ0.
(A3) In a neighborhood of θ0, the first and second derivatives of Un(θ) with respect

to θ are uniformly bounded above by a function of (Y1, Y2,X,W), whose expec-
tations exist.

(A4) For every i = 1, . . . , n, E
[
∂2`i(θ)
∂θ∂θ>

]
is finite and is negative definite in a neighbor-

hood of θ0. In addition, − 1√
n
∂Un(θ)
∂θ>

converges to a positive definite matrix Σ(θ) as
n tends to infinity.

Assumptions (A1) - (A4) are classical in zero-inflated regression models (see
Diallo et al. (2017), Diallo et al. (2018); Lukusa et al. (2016), Lee et al. (2020)).
In the following, the Rk space of k-dimensional column vectors will be provided
with the Euclidean norm ‖·‖2 and the space of (k×k) real matrices will be provided
with the norm ‖|A‖|2 := max‖x‖2=1‖Ax‖2 (for notations simplicity, we will use ‖ · ‖
for both norms).

We are now in position to state our results:
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3.2. Asymptotic results for the MLE

Theorem 1 (Existence and consistency). Under assumptions (A1) - (A4), θ̂n con-
verges in probability to θ0 when n tends to infinity.

The consistency of θ̂n, can be proved by checking that the conditions of Foutz’s
inverse function theorem (see Foutz (1977)) are satisfied.

First, we have ``n(θ) is twice differentiable with respect to θ and its second
derivatives are continuous. Thus ∂2``n(θ)

∂θ∂θ>
exists and is continuous in an open

neighborhood of θ0.
Condition 1 is therefore checked. �

Secondly, let us show that 1
n`

˙̀
n(θ0) = 1

n
∂``n(θ0)

∂θ converges in probability to 0 when
n tends to infinity. To justify this, we note

1

n
` ˙̀
n(θ0) =

( 1

n

n∑
i=1

Wi1Ai(θ0), . . . ,
1

n

n∑
i=1

WiqAi(θ0),
1

n

n∑
i=1

Xi1B1,i(θ0), . . . ,
1

n

n∑
i=1

XipB1,i(θ0),

1

n

n∑
i=1

Xi1B2,i(θ0), . . . ,
1

n

n∑
i=1

XipB2,i(θ0),
1

n

n∑
i=1

Ci(θ0)
)>

Since the score vector is centered, it follows that var
[
WilAi(θ0)

]
= E

[
W 2
ilA

2
i (θ0)

]
.

In addition, for every i = 1, . . . , n, E
[
− ∂2`i(θ0)

∂θ∂θ>

]
= E

[(
˙̀
i(θ0)( ˙̀

i(θ0)
)>

].
Thus, by (A2), it follows that var

(
Wi`Ai(θ0

))
<∞.

Therefore, by the weak law of large numbers, we have 1
n

n∑
i=1

Wi`Ai(θ0) converges in

probability to 0 as n→∞, for every ` = 1, . . . , q.

By similary arguments, we show that for every j = 1, ..., p, t ∈ {1, 2}, 1
n

n∑
i=1

XijBt,i(θ0)

and 1
n

n∑
i=1

Ci(θ0) converge in probability to 0, when n tends to infinity.

Finally, we can conclude that 1
n`

˙̀
n(θ0) converges in probability to 0(k,1), when n

tends to infinity.
Condition 2 is therefore checked. �

Thirdly, let us show that − 1
n
∂2``n(θ)
∂θ∂θ>

converges uniformly in probability to the
function Σ(θ) in an open neighbourhood of θ0.
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To see this, let Vθ0 be an open neighbourhood of θ0 and let θ ∈ Vθ0 . Let
Hi,(j,`)(Y1, Y2,Xi,Wi, θ) = −∂

2`i(θ)
∂θj∂θ`

for j, ` ∈ {1, . . . 2p+ q + 1}.
By (A3), it exists a function Ni(.) such that for θ, θ̃ ∈ Vθ0 , i ∈ {1, . . . , n}, we have

∣∣Hi,(j,`)(Y1i, Y2i,Xi,Wi, θ)−Hi,(j,`)(Y1i, Y2i,Xi,Wi, θ̃)
∣∣ ≤ Ni(Y1i, Y2i,Xi,Wi)‖θ − θ̃‖,

also we have 1
n

n∑
i=1

E[Ni(Y1i, Y2i,Xi,Wi)] = O(1). Furthermore, by assumption (A4),

− 1
n

n∑
i=1

∂2`i(θ)
∂θj∂θ`

converges in probability to Σ(j,`)(θ) as n tends to infinity, where Σ(j,`)(θ)

denotes the (j, `)-th element of Σ(θ), for j, ` ∈ {1, . . . , 2p + q + 1}. Hence, using
corrolary 3.1 of Newey (1991) under the assumptions (A1) - (A4), it follows that

− 1
n

n∑
i=1

∂2`i(θ)
∂θ∂θ>

converges uniformly in probability to a positive definite matrix Σ(θ) on

Vθ0 .

Condition 3 is therefore checked. �

The three conditions of Foutz (1977) inverse function theorem are verified. Thus,
we conclude that θ̂n converges in probability to θ0.

Theorem 2 (Asymptotic normality). Under Assumptions (A1) - (A4),
Σ(θ̂n)1/2

√
n(θ̂n − θ0) converges in distribution to the Gaussian vector N (0, Ik),

as n −→∞, where Ik is the k-dimensional identity matrix.

Proof of Theorem 2. The proof of Theorem 2 is classical, we omit it.

4. Simulation study

In this section, we assess finite-sample properties of the maximum likelihood esti-
mator θ̂n.

4.1. Study design

We generate data from the following ZIBP regression model :

{
logit(πi) = γ>Wi

log(λ1i) = β>1 Xi, log(λ2i) = β>2 Xi, and log(µ) = η,

with Xi = (1, Xi2, Xi3, Xi4, Xi5, Xi6)> and Wi = (1,Wi2,Wi3,Wi4,Wi5) where

– Xi1 = 1 and Xi2, . . . , Xi6 are independently drawn from normal N (0, 0.1), uniform
U(−1, 1), exponential E(1), binomial B(1, 0.8) and binomial B(1, 0.4) distributions,
respectively,

Journal home page: http://www.jafristat.net, www.projecteuclid.org/euclid.as,
www.ajol.info/afst



K. J. G. Kouakou, O. Hili and J-F Dupuy, Afrika Statistika, Vol. 16 (2), 2021, pages 2767 -
2788. Estimation in the zero-inflated bivariate Poisson model with an application to
health-care utilization data. 2776

– Wi1 = 1 and Wi3,Wi4,Wi5 are independently drawn from B(1, 0.3), normal
N (−1, 1) and binomial N (1, 0.5) distributions, respectively,

– by letting Wi2 = Xi2.
– The regression parameters β1, β2 and η are chosen as follows:
β1 = (−0.3, 0.85, 0.1, 0.25,−0.1,−0.05)>, β2 = (0.8,−0.74,−0.1,−0.1, 0.15,−0.1)>, η =
0.4

– We consider two cases for the regression parameter γ :
Case 1 γ = (−0.55,−0.75,−1, 0.45, 0)> for 25% zero-inflation
Case 2 γ = (−0.25,−0.4, 0.8, 0.45, 0)> for 50% zero-inflation

Using these values, in the case 1 (respectively, case 2) the average proportions of
zero-inflation in the simulated data sets is 25% (respectively, 50%).

For each combination of the simulation design parameters (sample size and
proportion of zero-inflation), we simulate N = 1000 samples and we calculate
the maximum likelihood estimate θ̂n of θ = (γ>, β>1 , β

>
2 , η). Several authors have

developed EM-type estimation algorithms in zero-inflation models (for example,
see Wang et al. (2003)). Other authors perform direct maximization using Newton-
Raphson algorithms see Diallo et al. (2017), Diallo et al. (2019). In our simulation
study, we use a Newton-Raphson algorithm implemented in the R package maxLik

developed by Henningsen and Toomet (2011).

4.2. Results

For each combination sample size × zero-inflation proportion of the simulation
parameters, we calculate the MLE θ̂n and the average bias and average relative
bias (expressed as a percentage) of the estimates γ̂i,n, β̂1,j,n, β̂2,k,n and η̂n over
the N simulated samples. For example, the relative bias of γ̂i,n is obtained as
1
N

∑N
t=1

γ̂
(t)
i,n−γi
γi

× 100 where γ̂(t)i,n denotes the MLE of γi in the t-th simulated sample.
We also calculate the average standard error (SE), empirical standard deviation
(SD) and root mean square error (RMSE) for each γ̂i,n (i = 1, . . . , 5) , β̂1,j,n, β̂2,k,n
(j, k = 1, . . . , 6) and η̂n. SE is calculated as the average of the standard errors across
the N simulated samples. For example, γ̂i,n, SE is obtain as 1

N

∑N
t=1 s.e.

(
γ̂
(t)
i,n

)
, while

SD (respectively RMSE) is the square root of the empirical variance (respectively
RMSE) of

(
γ̂
(1)
i,n , . . . , γ̂

(N)
i,n

)
. Moreover, we provide the empirical coverage probability

(CP) and average length of 95%-level confidence intervals for the γi, β1,j, β2,k and η.
Results are given in Table 1 (for the case 1) and Table 2 (for the case 2). In Table 1,
we provide results for n = 500, n = 2000 and 25% of zero-inflation. Table 2 provides
results for n = 500, n = 2000 and 50% of zero-inflation.

From the results obtained, we observe that the bias and relative bias are fairly
small. Second, the bias, relative bias, SE, SD, and `(CI) of all estimators decrease
as the sample size increases. In addition, for γi, β1,j, β2,k and η empirical coverage
probabilities are close to the nominal confidence level in every case. On the
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other hand, we observe that the MLE of the β1,js, β2,ks and ηns (respectively,
γis) performs better when the zero inflation proportion decreases (respectively,
increases).

To assess the quality of the Gaussian approximation stated in Theorem 2, we
provide normal Q-Q plots of the estimates and histograms of the normalized
estimates (γ̂i,n − γi)/s.e.(γ̂i,n), j = 1, . . . , 5, (β̂1,j,n − β1,j)/s.e.(β̂1,j,n), j = 1, . . . , 6,
(β̂2,k,n− β2,k)/s.e.(β̂2,k,n), k = 1, . . . , 6 and (η̂n− ηl)/s.e.(η̂n). We provide these graphs
for n = 2000 and an average sample proportion of zero-inflation equal to 25%
(Fig. 1 to 4 provide Q-Q plots for

(
γ̂1,n, . . . , γ̂5,n

)
,
(
β̂1,1,n, . . . , β̂1,6,n

)
,
(
β̂2,1,n, . . . , β̂2,6,n

)
,

η̂n, respectively; Fig. 5 to 8 provide histograms of the normalized
(
γ̂1,n, . . . , γ̂5,n

)
,(

β̂1,1,n, . . . , β̂1,6,n
)
,
(
β̂2,1,n, . . . , β̂2,6,n

)
, η̂n, respectively). The plots of the other simu-

lated scenarios are similar and are therefore not given. From these figures, it ap-
pears that the Gaussian approximation of the distribution of the MLE in the ZIBP
is reasonably satisfied, even when the sample size is moderate and the proportion
of zero-inflation is as high as 50%.
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5. Application

5.1. Data description and modeling

In this section we describe an application of ZIBP regression model to the anal-
ysis of health-care utilization by elderlies in the United States. We use data from
the National Medical Expenditure Survey (NMES) conducted in 1987-1988 in the
United States. These health survey data contain a set of 4406 observations of in-
dividuals aged 66 and over. This data set has been reviewed by Deb and Trivedi
Deb and Trivedi (2005); see also Diallo et al. (2017) and is available in the R pack-
age AER under the name ”NMES1988”. In these data, we consider jointly health-care
utilization measures: the number ofnd of consultations with a non-doctor in an
office setting and the number opnd of consultations with a non-doctor in an out-
patient setting. The frequency of individuals with zero occurring simultaneously
in (ofnd and opnd) is 59.03%. The tests carried out with the cor.test function of
package stat of R on the variables ofnd and opnd show that they are correlated
and cov(ofnd,opnd)=0.8615743. Thus we propose to use ZIBP model to investigate
the determinants of health-care utilization in this data set. Some covariates were
recorded on each individual. They include : (i) socio-economic variables : gender
(1 for female, 0 for male, denoted gender), age (in years, divided by 10, denoted by
age), marital status (1 if married, 0 otherwise, denoted by status), educational level
(number of years of education, denoted by school), family income (in ten-thousands
of dollars, denoted by income); (ii) various measures of health status: number of
chronic conditions (cancer, diabete, arthritis, . . . denoted by chronic) and a variable
indicating self-perceived health level (poor, average, excellent), which we re-code as
”health1” (1 if health is perceived as poor, 0 otherwise) and ”health2” (1 health is
perceived as excellent, 0 otherwise); (iii) medicaid, a binary variable that indicates
whether the individual is covered by medicaid or not. We code it as 1 if the person
is covered and 0 otherwise. We fit a ZIBP regression model incorporating all avail-
able covariates in (2)-(3) for each individual. Then, we used Wald tests to select
significant covariates. The least significant covariate ”at the level 5%” is removed
and the model is fitted again, until all remaining covariates are significant; the BIC
criterion decreases at each step of this procedure. Table3 presents the final ZIBP
model.

5.2. Results

Results for the resulting ZIBP model are displayed in Table 3. Estimate, standard
error (s.e.) and significance level (as : not significant, significant or very signifi-
cant) of Wald test of nullity for each parameter are reported in Table 3. The results
show that, number of chronic conditions, gender, educational level and medicaid
status are identified by ZIBP as the most influencing factors of the decision of
never resorting to non-physician health professional (office or outpatient). It ap-
pears that the probability of never resorting to non-doctor consultations decreases
with the number of chronic conditions. This is justified by the fact that the more
chronic the patient’s condition, the more likely the patient is to favour visits to
the doctor. Then, the probability of never having recourse to consultations with a
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Table 3. Health-care data analysis: estimates (standard errors) and significance
codes: ? ? ? significant at the 0.1% level, ?? significant at the 1% level, ? significant
at the 5% level.

parameter variable estimate s.e. Pr(> t) signif.
γ̂1 intercept 0.667400 0.202808 0.000999 ? ? ?
γ̂2 chronic -0.165918 0.023503 1.67e−12 ? ? ?
γ̂3 gender 0.314814 0.064692 1.14e−06 ? ? ?
γ̂4 education -0.088953 0.008967 < 2e−16 ? ? ?
γ̂5 medicaid 0.397012 0.117432 0.000723 ? ? ?

β̂1,1 intercept 1.381952 0.209195 3.95e−11 ? ? ?

β̂1,2 health1 0.083504 0.041901 0.046273 ?

β̂1,3 health2 0.133144 0.046970 0.004588 ??

β̂1,4 chronic 0.025524 0.009689 0.008428 ??

β̂1,5 age -0.124267 0.021390 6.26e−09 ? ? ?

β̂1,6 gender -0.007129 0.027981 0.798901
β̂1,7 marital statuts 0.004958 0.028733 0.862999
β̂1,8 education 0.032632 0.003950 < 2e−16 ? ? ?

β̂1,9 income -0.018566 0.004775 0.000101 ? ? ?

β̂1,10 medicaid 0.205903 0.051070 5.54e−05 ? ? ?

β̂2,1 intercept 7.573439 0.377543 < 2e−16 ? ? ?

β̂2,2 health1 -0.168968 0.063093 0.007404 ??

β̂2,3 health2 -0.788500 0.144316 4.66e−08 ? ? ?

β̂2,4 chronic 0.112977 0.015864 1.07e−12 ? ? ?

β̂2,5 age -0.491438 0.040842 < 2e−16 ? ? ?

β̂2,6 gender 0.214599 0.048058 7.99e−06 ? ? ?

β̂2,7 marital statuts -0.116671 0.050193 0.020101 ?

β̂2,8 education -0.103404 0.006346 < 2e−16 ? ? ?

β̂2,9 income -0.024264 0.010076 0.016033 ?

β̂2,10 medicaid -1.758261 0.061534 < 2e− 16 ? ? ?

non-physician decreases with the number of years of education. Indeed, education
may make individuals more informed consumers of health care services. This re-
sult further confirms those of Deb and Trivedi (2005). Medicaid beneficiaries tend
to forego consultations with a non-physician. Because Medicaid is health insur-
ance for poor people, recipients are limited in their choice of consultations. They
are limited to visits to the doctor only. It is also found that women are more likely
to be non-users of ofnd and opnd.

Among patients who have not systematically given up consulting a non-physician
health professional, the probability of having recourse to an ofnp or opnp consul-
tation decreases with age and income. A patient’s level of income will influence the
nature and quality of the care he or she seeks, rather than the number of visits,
which is consistent with Deb and Trivedi (2005). The probability of resorting to
an opnp consultation decreases when patients feel that their health is no longer
excellent, it has deteriorated. An elderly patient living away from cities may find
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Fig. 1. Normal Q−Q plots for γ̂1,n, . . . , γ̂5,n with n = 2000 and 25% of zero-inflation.

it difficult to get to a consultation. Elderly patients most often have mobility
problems. Married patients appear to renounce consulting a non-physician on
an outpatient basis. Although better informed patients tend to diversify their use
of health care, they seem to move away from the opnp health service to the ofnp

service.

Therefore, by considering the variables ofnd and opnd simultaneously, while taking
into account the correlation between them, allows the ZIBP model a better under-
standing of the elements that justify the use of different forms of medical care in
order of use. We have found that patients with frail health, elderly, and covered by
medicaid insurance prefer consultations with doctors than with non-doctors.

6. Conclusion

In this work, we theoretically and numerically evaluated the performance of the
maximum likelihood estimator in the ZIBP model. An application of the ZIBP model
to NMES data provided insight into the factors that promote the renunciation or
use of some health care services. Now, several extensions of the ZIBP model should
be developed to extend its scope. For example, we can first consider studying the
properties of the MLE in the ZIBP models with randomly censored values on the
right or left or by intervals. Second, consider inference in multivariate Poisson
regression models with zero inflation. These topics could form the basis of our
future work.
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Fig. 2. Normal Q−Q plots for β̂1,1,n, . . . , β̂1,6,n with n = 2000, 25% of zero-inflation.
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Fig. 3. Normal Q−Q plots for β̂2,1,n, . . . , β̂2,6,n with n = 2000, 25% of zero-inflation.

Fig. 4. Normal Q−Q plots for η̂n with n = 2000, 25% of zero-inflation.
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Fig. 5. Histograms of the normalized estimates (γ̂j,n−γj)/s.e.(γ̂j,n), j = 1, . . . , 5 with
n = 2000 and 25% of zero-inflation.

Fig. 6. Histograms of the normalized estimates (β̂1,j,n−β1,j)/s.e.(β̂1,j,n), j = 1, . . . , 6
with n = 2000 and 25% of zero-inflation.
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Fig. 7. Histograms of the normalized estimates (β̂2,j,n − β2,j)/s.e.(β̂2,j,n), j = 1, . . . , 6
with n = 2000 and 25% of zero-inflation.

References

Al Muhayfith, F.E., Alzaid A.A., and Omair, M.A., 2016. On bivariate Poisson regression mod-
els. Journal of King Saud University - Science, 28(2):178-189.
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