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stationnaires à longue mémoire. Les variables sont observées sur un ensemble fini
de points de l’espace. Nous établissons sous certaines conditions, la convergence
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1. Introduction

The purpose of this paper is within the framework of the estimation of the
parameters of multivariate gaussian, stationary and long memory random fields
using a criterion based on the minimum Hellinger distance. This estimate uses
nonparametric kernel estimate of the process density. We establish the almost sure
convergence and asymptotic distribution of the obtained parametric estimator. An
asymptotic study of a kernel density estimator which plays an essential role in
this framework of estimation is also studied. This paper enriches the literature on
process statistics and contributes significantly to parametric estimation. Indeed,
it extends N’dri and al. (2019) to the study of multivariate random fields. In
addition, the existing work on multivariate long memory random fields are of two
types. On the one hand, we find work on the modeling of long memory dependent
multivariate random fields estimation procedures. Among these studies, we
have the paper of Alomari and al. (2017) entitled ”Ibragimov minimum contrast
estimators based on tapered data of Gaussian stationary random fields”. On the
other hand, theoretical research on the basic tools of asymptotic statistics such
as partial sums has been done by Major (2019).

Long memory phenomena are well known in various areas of applications, includ-
ing notably Econometrics, Finance, and Network traffic modeling. Traditionally,
a stationary stochastic process with finite second moment is considered to have
long range dependence (or long memory) if, either the covariance function has the
power law decay, or the spectral density has a singularity at the origin. The two
approaches are referred to in the literature as the time domain approach and the
frequency domain approach, respectively.

This paper uses the time domain approach to study the asymptotic properties
of the Minimum Hellinger Distance Estimator (MHDE). The probability density
function of the random field denoted by f(x, θ0), depends on a parameter θ0 ∈ Θ a
compact subset of Rq and x ∈ Rd. We construct an estimator θ̂n of the true param-
eter θ0. The values of this estimator are in the parameter space Θ and minimize
the Hellinger distance between f(., θ0) and fn, the kernel density estimator. This
study therefore falls within the field of spatial statistics. The purpose of spatial
statistics is to study phenomena (temperatures, study of a population, study of
cities, . . . ) on a spatial set S ⊂ Rd, d ≥ 2. There is a space dependency of this data.
We will therefore set X, a random field (a family of random variables) on S with
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X = Xs, s ∈ S composed of variables indexed by S. We then consider the spatial
data as realizations of random fields. These processes can be modeling tools in
image study, Geostatistics, particle Physics or even spatial Econometrics. This
paper deals with multivariate long memory gaussian spatial data. It should be
noted that the study of the multivariate spatial models are vastly underdeveloped
compared to multivariate gaussian time series models. Gaussian random fields
with long-range dependence are known to have applications in Medical image
processing Biermé and al. (2008), Major (1981) and Hydrology Benson and al.
(2006), Meerschaert and al. (2013a), Physics, Engineering, Biology, Economics and
Finance. For instance, multivariate Gaussian random field allows the modeling of
weather variables residuals (excluding precipitation).

The rest of this paper proceeds as follows. In section 2, we define the basic tools of
our study. Section 3 presents the assumptions and states our main results (Theo-
rem 1 and Theorem 2). An important technical tool in this paper is the convergence
of the kernel density estimator to the true density f(x, θ0) in the Hellinger topology.
We prove this result in Lemma 1. Then, applying this asymptotic property, we
show consistency property for the Minimum Hellinger Distance Estimator(MHDE).
The asymptotic distribution of this estimator is studied in Theorem 2. Throughout
this paper, −→P denote convergence in probability. For every site i, j ∈ In ⊂ Nν ,
‖i− j‖ is a distance between sites i and j. The integer τ is the Hermite rank of the
family defined in subsection 2.3.

2. Definitions and Notations

In this section, we give the mathematical definitions and the notations used for the
following. The random field (Xi)i∈Zν is defined on some probability space (Ω,F , P ).
Let Xi = (X

(1)
i , X

(2)
i , . . . , X

(d)
i ) and

γ(i, j) = cov(Xi, Xj) =
{
γ(p,q)(i, j)

}
1≤p,q≤d

be the covariance matrix function, where the functions

γ(p,q)(i, j) = cov(X
(p)
i , X

(q)
j ) for 1 ≤ p, q ≤ d.

2.1. Multivariate Gaussian Random Field

Gaussian random fields play an important role for several reasons. First, the spec-
ification of their finite-dimensional distributions is simple. Then, they are reason-
able models for modeling many natural phenomena. Finally, estimation and infer-
ence are simple, and the model is specified by expectations and covariances. The
form of the multivariate density function is

f(x1, x2, . . . , xd) = (2π)−d/2 | R |−1/2 exp

{
−1

2
(x−m)′R−1(x−m)

}

Journal home page: http://www.jafristat.net, www.projecteuclid.org/euclid.as,
www.ajol.info/afst
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where R is a d × d variance-covariance matrix of Xi = (X
(1)
i , X

(2)
i , . . . , X

(d)
i ), | R |

the determinant of R, x′ = (x1, x2, . . . , xd) is a row vector and m′ = (m1,m2, . . . ,md)
the mean vector. Without loss of generality and for theoretical considerations, we
assume that E(X

(p)
i ) = 0, E(X

(p)
i )2 = 1 for all 1 ≤ p ≤ d, i ∈ Zν . On the over hand,

we consider a site i with positive components.

Definition 1. A multivariate random field is second-order stationary (or just sta-
tionary) if the mean vector m is constant and the covariance function γ(p,q)(i, j) =

cov(X
(p)
i , X

(q)
j ) is a function of the difference h = j − i only. Namely, γ(p,q)(i, i+h) =

γ(p,q)(h) for 1 ≤ p, q ≤ d.

Definition 2. The multivariate random field Xi = (X
(1)
i , X

(2)
i , . . . , X

(d)
i ), is long

range dependent if there exist a slowly varying function at infinity L such that
the covariance function γ(p,q)(j) satisfies the relation

γ(p,q)(j) := ‖j‖−αbp,q
(

j
‖j‖

)
L(‖j‖) (1)

for all 1 ≤ p, q ≤ d, where the parameter 0 < α < ν. The function L is such that

lim
s→+∞

L(st)

L(s)
= 1, t > 0

and bp,q(.) a real valued continuous function on the unit sphere Sν−1 = {x ∈
Rν , ‖x‖ = 1}.

Example 1. As in the Theorem 3A of Major (1981) and Ho and Sun (1990) there are
measures Gp,q, for 1 ≤ p, q ≤ d such that

γp,q(j) =

∫
[−π,π]ν

exp(ijx)dGp,q(x).

We get a correlation function satisfying (1) with the help of a matrix valued spectral
measure whose coordinates Gp,q have a density function of the form

gp,q(x) = ‖x‖α−νbp,q
(

x

‖x‖

)
h(‖x‖)

with respect to the Lebesgue measure on the cube, x ∈ [−π, π]ν and h(x) a non-
negative smooth and even function on the torus [−π, π]ν which does not disappear
at the origin and tends to zero at infinity sufficiently fast.
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2.2. Kernel density estimator

Denote by In a rectangular region defined by

In = {i = (i1, ..., iν) ∈ N∗ν , 1 ≤ il ≤ n for l = 1, . . . , ν}

and nν = Card(In).

Assume that we observe Xi on In. The kernel density estimator fn of f(x, θ0) is
defined by

fn(x) =
1

nνbdn

∑
i∈In

K

(
x−Xi

bn

)
=

1

nνbdn

n∑
i1=1

n∑
i2=1

...

n∑
iν=1

K

(
x−Xi1,...,iν

bn

)
, x ∈ Rd

where K is a kernel function and (bn)n is a sequence of bandwidths tending to
zero as n tends to infinity.

The standard multivariate normal kernel for x ∈ Rd is

K(x) = (2π)−d/2exp

{
−1

2
x′x

}
.

An easy way to construct a multivariate kernel from an univariate kernel is to
construct a product kernel. Let x = (x1, . . . , xd) and Ku be an univariate kernel
then

K(x) =

d∏
i=1

Ku(xi).

An important feature is to scale kernel functions by a parameter matrix H =
{hij}i,j=1,...,d with

KH(x) = |H|−1K(H−1x).

2.3. Hermite Polynomial Expansion for Multivariate Gaussian Function

Let us consider the following function,

Gn(x,Xi) = K

(
x−Xi

bn

)
− E

(
K

(
x−Xi

bn

))
.

We have E(Gn(x,Xi)) = 0 and
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E(Gn(x,Xi))
2 = E

(
K

(
x−Xi

bn

)
− E

(
K

(
x−Xi

bn

)))2

≤ E
(
K

(
x−Xi

bn

))2

≤
∫
Rd
K2

(
x− u
bn

)
fθ(u)du ≤ sup

u∈Rd
fθ(u)bdn

∫
Rd
K2(z) dz < +∞.

Moreover, the function Gn : Rd → R is a measurable function. Therefore, that func-
tion can be expand in

L2

(
Rd,

1

(
√

2π)d
exp

(
−1

2
(z2

1 + . . .+ z2
d)

))
≡

{
G :

1

(
√

2π)d

∫
Rd
G2(z) exp

(
−1

2
(z2

1 + . . .+ z2
d)

)
dz < +∞

}
space,

in following series

Gn(x,Xi) =

+∞∑
`1,...,`d=0

c
`1,...,`d

(x)∏d
j=1 `j !

d∏
j=1

H`j (X
(j)
i )

where

c
`1,...,`d

(x) =

∫
Rd
H`(z)Gn(x, z)φ(z)dz with φ(z) =

1

(
√

2π)d
exp

(
−1

2
(z2

1 + . . .+ z2
d)

)
,

H`(x1, . . . , xd) =
(−1)|`|√

`!
exp

(
x2

1 + . . .+ x2
d

2

)
∂|`|

∂x`11 . . . ∂x`dd
exp

(
−x

2
1 + . . .+ x2

d

2

)
,

the Rd-valued Hermite polynomial, ` = (`1, . . . , `d), `! =
∏d
j=1 `j and |`| = `1 + . . .+ `d.

We say that G has Hermite rank τ if the Hermite coefficient c
`1,...,`d

(x) = 0 for
`1 + . . .+ `d < τ and c

`1,...,`d
(x) 6= 0 for some `1 + . . .+ `d = τ.

2.4. Multiple Wiener-Itô Integral

Given a vector of stationary gaussian random field Xi = (X
(1)
i , . . . , X

(d)
i ), i ∈ Zν ,

with expectation zero and covariance function γp,q(.) that satisfies relation (1) with
some parameter 0 < α < ν. Let us consider its matrix valued spectral measure
(Gp,q) , 1 ≤ p, q ≤ d concentrated on the cube [−π, π]

ν and define

G(n)
p,q (A) =

nα

L(n)

(
A

n

)
, A ∈ Bν , n = 1, 2, . . . , 1 ≤ p, q ≤ d,
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concentrated on [−nπ, nπ]ν for all n = 1, 2, . . . where Bν denotes the σ−algebra of
the Borel measurable sets on Rν .

Then, there exist a spectral measure
(
G

(0)
p,q

)
, 1 ≤ p, q ≤ d of generalized stationary

random fields on Rν such that G(n)
p,q tend vaguely to G(0)

p,q on Rν .

For details, see Proposition 1 of Dobrushin and Major (1979).

Let ρ(x, θ0) defined in Theorem 2, ZG(0) =
(
ZG(0),1, . . . , ZG(0),d

)
be a vector valued ran-

dom spectral measure which corresponds to the matrix valued spectral measure(
G(0)
p,q

)
, 1 ≤ p, q ≤ d

and define indices

j(s|`1, . . . , `d), 1 ≤ s ≤ τ, as j(s|`1, . . . , `d) = r

if

s−1∑
u=1

`u < r ≤
s∑

u=1

`u, 1 ≤ s ≤ τ.

Then, the sum of multiple Wiener-Itô integrals defined by

+∞∑
`1,...,`d=0
`1+...+`d=τ

c`1,...,`d

∫
[−π,π]τ

∏ν

`=1

exp
(
i
(
x

(`)
1 + . . .+ x

(`)
τ

))
− 1

i
(
x

(`)
1 + . . .+ x

(`)
τ

) ZG(0),j(1|`1,...,`d)(dx1) . . .

ZG(0),j(τ |`1,,...,`d)(dxτ )

∫
Rd

ρ(x, θ0)

2f1/2(x, θ0)
dx

exists.

3. Statement of Assumptions and Results

From the Kolmogorov Existence theorem on arbitrary products spaces, we suppose
that there exist a random field (X ′i)i∈In which is an independent copy of the random
field (Xi)i∈In on the same probability space (Ω,F , P ). Thereafter, we define the set
B′(n, d, ε) which uses the sequence (X ′i)i∈In . Thus, the set B′(n, d, ε) constructed is
an independent version of

B(n, d, ε) =

{
x = (x1, x2, . . . , xd), |

∑
i∈In

G(x,Xi) |≥ nνbdnε

}
.
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3.1. Assumptions

Assumptions A

(A1) Suppose that 0 < τα < ν, nνbdn → +∞ and

lim
n→+∞

ncταb2n = 0 for a constant 0 < c <
1

4
.

(A2) Suppose that ∫
B(n,d,ε)

d∏
j=1

φ(xj)dxj =

∫
B′(n,d,ε)

d∏
j=1

φ(xj)dxj .

(A3) The kernel K is bounded with compact support, such that∫
Rd
uiK(u)du = 0 and 0 ≤

∫
Rd
uiujK(u)du < +∞ for 1 ≤ i, j ≤ d.

Assumptions B

(B1) For each θ ∈ Θ, the function

x 7→ f(x, θ)

is twice continuously differentiable.

(B2) For each x ∈ Rd, the function

θ 7→ f(x, θ)

is continuous.

(B3) For each x ∈ Rd, the function

θ 7→ ∂

∂θj
f1/2(x, θ),

for 1 ≤ j ≤ q, is continuous and for every j, the function

θ 7→ ∂

∂θj
f1/2(x, θ)

is in L2(Rq).

(B4) For each x ∈ Rd, the function
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θ 7→ ∂2

∂θj∂θk
f1/2(x, θ), 1 ≤ j, k ≤ q

is continuous and for every j, k, the function

θ 7→ ∂2

∂θj∂θk
f1/2(x, θ)

is in L2(Rq).

(B5) For θ, θ′ ∈ Θ, θ 6= θ′ implies that

{x ∈ Rd f(x, θ) 6= f(x, θ′)}

is a set of positive Lebesgue measure.

Remark 3.1
(1) Assumption (A1) is satisfies when we chose bn = n

τα
d (2c−1) when 0 < c < 1/4 and

d ∈ {2, 3, 4}.

(2) Assumption (B5) is the identifiability assumption on the parametrization.

3.2. Minimum Hellinger Distance Estimator (MHDE)

In this subsection, we will briefly discuss minimum Hellinger distance estimation.
Let f(x) and g(x) be any two densities ; the Hellinger distance between f(x) and
g(x) is defined as the L2-norm of the difference between square root of density
functions, i.e.

HD2(f, g) =

∫
Rd

[
(f(x))1/2 − (g(x))1/2

]2
dx.

Let X1, X2, · · · , Xn be long range dependent random field with density belonging to
a specified parametric family {f(., θ) : θ ∈ Θ}. To motivate the MHDE, replace f by
f(., θ) and g by fn, a nonparametric estimator of the density. Therefore, the Hellinger
distance in our question becomes the distance between the true density f(., θ0) and
the non-parametric density estimator of theXi’s, which can be expressed as follows
:

HD2(f(., θ), fn) =

∫
Rd

[
(f(x, θ))1/2 − (fn(x))1/2

]2
dx . (2)

The minimum Hellinger distance estimator of θ is defined to be the value θ̂n (in the
parameter space Θ), if it exists, that minimizes (2).
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Beran (1977) showed that the MHDE is more robust than maximum likelihood
estimator when data contaminations are present. Furthermore MHDE is known
to be asymptotically efficient under a specified parametric family of densities and
is minimax robust in a small Hellinger metric neighborhood of the given family
(see Beran (1977), Hili (1995)).

Let G denote the class of densities metrized by the L1 distance. We define the Min-
imum Hellinger Distance Functional (MHDF ) to be the functional T : G → Θ such
that

T (g) = argmin
θ∈Θ

HD2(f(., θ), g).

Applying Assumption (B2) and (B5), Beran (1977) has shown the existence of
MHDE for Θ compact and discussed the extension of the result for noncompact Θ.
Moreover T (f(., θ)) may have multiple values, so we shall assume that it stands for
any one of those values.

3.3. Main Results

In this subsection, we study in Theorem 1, the efficiency property of the MHDE.
For the proof of this Theorem, we use Lemma 1 below and the continuity of the
functional T (see Beran (1977)). The study of asymptotic distribution property in
Theorem 2 is very important. Indeed, this property is useful in the selection criteria
of estimators. Knowing the asymptotic distribution of the estimator can solve the
problem of estimation by confidence interval and hypothesis testing.

Lemma 1. If the Assumptions (A1)-(A3), (B1), (B2) and (B5) are satisfied, then fn
almost surely converges to f(., θ0) in the Hellinger topology.

Proof (Proof of Lemma 1). We have fn(x) − f(x, θ0) = fn(x) − Efn(x) + (Efn(x) −
f(x, θ0)). Now, we show that

fn(x)− Efn(x) =
1

nνbdn

∑
i∈In

(
K

(
x−Xi

bn

)
− EK

(
x−Xi

bn

))
→ 0 a.s., n→ +∞.

We have for ε ≥ 0,

P{|fn(x)− Efn(x)| ≥ ε} = P


∣∣∣∣∣∣ 1

nνbdn

∑
i∈In

(
K

(
x−Xi

bn

)
− EK

(
x−Xi

bn

))∣∣∣∣∣∣ ≥ ε
 .

Thus, for ε ≥ 0,
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P{|fn(x)− Efn(x)| ≥ ε} =

∫
B(n,d,ε)

f(x1, x2, . . . , xd)dx1dx2 . . . dxd.

For large n, γ(n) = sup‖j‖≥n
(
γ(p,q)(j)

)
→ 0.

This enables us to use Lemma 3.3 of Taqqu (1977) to express the density f as a
uniformly convergent series over Rd. So for n ≥ n0,

f(x1, x2, . . . , xd) =

∞∑
q=0

∑
k1+...+kd=2q
0<k1,...,kd<q

E
d∏
j=1

Hkj (X
(j)
i )


d∏
j=1

Hkj (xj)

kj !
φ(xj)

where

Hk(x) = (−1)k exp

(
x2

2

)
dk

dxk
exp

(
−x

2

2

)
denotes the k − th Hermite polynomial of

K

(
x−X
bn

)
− EK

(
x−X
bn

)

in L2(φ) and

φ(x) =
1√
2π

exp

(
−x

2

2

)
.

By using Holder’s inequality and the fact that∫
H2
k(x)φ(x)dx = k!,

we get

∫
B(n,d,ε)

f(x1, x2, . . . , xd)dx1dx2 . . . dxd ≤


∞∑
q=0

∑
k1+...+kd=2q
0<k1,...,kd<q

∣∣∣∣∣∣E
d∏
j=1

Hkj (X
(j)
i )√

kj !

∣∣∣∣∣∣
×

∫
B(n,b,ε)

d∏
j=1

φ(xj)dxj


1/2

.

By applying Lemma 3.1 of Taqqu (1977)(cf. the proof of Lemma 3.1 of the paper),
we obtain
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∞∑
q=0

∑
k1+...+kd=2q
0<k1,...,kd<q

∣∣∣∣∣∣E
d∏
j=1

Hkj (X
(j)
i )√

kj !

∣∣∣∣∣∣ ≤
∞∑
q=0

∑
k1+...+kd=2q
0<k1,...,kd<q

γ(n)(k1+...+kd)/2
d∏
j=1

(d− 1)kj/2

≤

( ∞∑
k=0

((d− 1)γ(n))k/2

)d
= exp(−d ln(1− U(n))), (3)

where U(n) = ((d− 1)γ(n))1/2.

By using Bernstein-type inequality in Dedecker (2001)(See Corollary 3) and As-
sumption (A2), we obtain for some C(d) = d exp

(
1
e

)
> 0


∫
B(n,d,ε)

d∏
j=1

φ(xj)dxj


1/2

=


∫
B′(n,d,ε)

d∏
j=1

φ(xj)dxj


1/2

≤ C(d) exp

(
−n

2νb2dn ε
2

4bdnn
ν

)
= C(d) exp

(
−n

νbdnε
2

4

)
. (4)

By combining (3) and (4), we get for ε > 0,

P(|fn(x)− Efn(x)| ≥ ε) ≤ C(d) exp

(
−n

νbdnε
2

4
− d ln(1− U(n))

)
= C(d) exp

(
−nνbdn

(
ε2

4
+ ϑ(n)

))
where

ϑ(n) =
d ln(1− U(n))

nνbdn
.

A one order expansion of ln(1− U(n)) in the neighborhood of zero gives
ln(1− U(n)) ∼ −U(n) = −((d− 1)γ(n))1/2. So,

lim
n→+∞

ϑ(n) = lim
n→+∞

d ln(1− U(n))

nνbdn
= 0.

Hence there is n1 such that, for all n ≥ n1

P(|fn(x)− Efn(x)| ≥ ε) ≤ C(d) exp

(
−
(
nνbdn

(
ε2

4

)))
.
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Then

∑
n≥0

P (|fn(x)− Efn(x)| > ε) ≤
∑
n≥0

exp

(
−
(
nνbdn

(
ε2

4

)))
<∞.

By using Borel-Cantelli lemma, we get fn(x)− E(fn(x))→ 0 a.s.
On the other hand, Efn (x)− f (x, θ0) =

∫
Rd K (u) (f (x− bnu, θ0)− f (x, θ0)) du and for

each x ∈ Rd, K (u) |f (x− bnu, θ0)− f (x, θ0) | ≤ cK (u).
By the continuity of the density and by the dominated convergence theorem, we
conclude that Efn (x)− f (x, θ0)→ 0 as n→ +∞ for each x ∈ Rd.
Then, for all x ∈ Rd, fn(x) almost surely (a.s.) converges to f(x, θ0). Thus,

P
(

lim
n→+∞

f1/2
n (x) = f1/2(x, θ0), ∀x ∈ Rd

)
= 1.

Furthermore, since
∫
Rd fn(x)dx =

∫
Rd f(x, θ0)dx = 1, hence

lim
n→+∞

(∫
Rd
|f1/2
n (x)− f1/2(x, θ0)|2dx

)1/2

= 0 a.s.

Therefore fn → f a.s. when n→ +∞ in the Hellinger topology.

Theorem 1 (Almost sure convergence). Let Assumptions (A1)-(A3), (B1), (B2) and
(B5) be fulfilled. If θ0 is in the interior of Θ, then θ̂n almost surely converges to θ0

when n→ +∞.

Proof (Proof of Theorem 1). From Lemma 1 and from the continuity of
the functional T (see Theorem 1 in Beran (1977)), we deduce that
θ̂n = T (fn)→ T (f(., θ)) = θ0 a.s. as n→ +∞.

This completes the proof.

For the following theorem, we adopt the following notations, S(., θ) = f1/2(., θ),

Ṡ(., θ) =
(

∂
∂θ1

f1/2(., θ), . . . , ∂
∂θq

f1/2(., θ)
)T

, where Ṡ(., θ)T is the transpose of Ṡ(., θ) and

ρ(x, θ) =

[∫
Rd
Ṡ(x, θ)Ṡ(x, θ)T dx

]−1

Ṡ(x, θ).

Theorem 2 (Asymptotic distribution). Let Assumptions (A1)-(A3) and (B1)-(B5) be
fulfilled. If θ0 lies in the interior of Θ and if

∫
Rd Ṡ(x, θ0)Ṡ(x, θ0)T dx is a non singular

(q × q)-matrix, then ncτα

Lτ/2(n)
(θ̂n − θ0) converges in distribution to
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+∞∑
l1,...,ld=0
l1+...+ld=τ

cl1,...,ld

∫
[−π,π]τ

∏ν

l=1

exp
(
i
(
x

(l)
1 + . . .+ x

(l)
τ

))
− 1

i
(
x

(l)
1 + . . .+ x

(l)
τ

) ZG(0),j(1|l1,...,ld)(dx1) . . .

ZG(0),j(τ |l1,,...,ld)(dxτ )

∫
Rd

ρ(x, θ0)

2f1/2(x, θ0)
dx.

Proof (Proof of Theorem 2). From Theorem 2 in Beran (1977), we deduce that

ncτα

Lτ/2(n)
(θ̂n − θ0) =

ncτα

Lτ/2(n)

∫
Rd
ρ(x, θ0)(f1/2

n (x)− f1/2(x, θ0)) dx+

Vn

∫
Rd

ncτα

Lτ/2(n)
Ṡ(x, θ0)(f1/2

n (x)− f1/2(x, θ0)) dx,

where Vn is a (q × q)-matrix whose components tends to zero in probability as
n→ +∞.

For b ≥ 0, a > 0 we have the algebraic identity

b1/2 − a1/2 = (b− a)/(2a1/2)− (b− a)2/
[
2a1/2( b1/2 + a1/2)2

]
.

Thus,

∫
Rd

ncτα

Lτ/2(n)
ρ(x, θ0)(f1/2

n (x)− f1/2(x, θ0)) dx

=

∫
Rd

ncτα

Lτ/2(n)

ρ(x, θ0)

2f1/2(x, θ0)
(fn(x)− f(x, θ0)) dx+ Rn(θ0) (5)

where

| Rn(θ0) | ≤
∫
Rd

ncτα

Lτ/2(n)

∣∣∣∣ ρ(x, θ0)

f3/2(x, θ0)

∣∣∣∣ (fn(x)− f(x, θ0))2 dx

≤ C1

{∫
Rd

ncτα

Lτ/2(n)
|ρ(x, θ0)| (fn(x)− Efn(x))2 dx

}
+ C1

{∫
Rd

ncτα

Lτ/2(n)
|ρ(x, θ0)| (Efn(x)− f(x, θ0))2 dx

}
and C1 a positive constant. We have,

∑
n≥0

ncατP
(
|fn(x)− Efn(x)|2 > ε

)
≤
∑
n≥0

ncατ exp

(
−
(
nνbdn

(
ε2

4

)))
<∞. (6)
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Therefore by the dominated convergence Theorem, we get∫
Rd

ncτα

Lτ/2(n)
|ρ(x, θ0)| (fn(x)− Efn(x))2dx→ 0 a.s., n→ +∞.

By using Assumptions (A3) and (B1), Taylor’s formula in several variables gives for
x ∈ Ux ⊂ Rd a neighborhood of x

b−2
n (Efn(x)− f(x, θ0)) = b−2

n

∫
Rd
K(u)[f(x− ubn)− f(x, θ0)]du

=

d∑
i,j=1

∫
Rd
K(u)uiuj

∫ 1

0

∂2f

∂xi∂xj
(x− ubnt, θ0)(1− t)dtdu.

Assumption (B1) gives,

lim
n→+∞

d∑
i,j=1

∫
Rd
K(u)uiuj

∫ 1

0

∂2f

∂xi∂xj
(x− ubnt, θ0)(1− t)dtdu

=
1

2

d∑
i,j=1

∂2f

∂xi∂xj
(x, θ0)

∫
Rd
K(u)uiujdu = γ(x, θ0),

and

lim
n→+∞

ncτα(Efn(x)− f(x, θ0))2 = lim
n→+∞

ncταb4nγ
2(x, θ0) = 0. (7)

Consequently, by (7) and by the dominated convergence theorem,

ncτα

Lτ/2(n)

∫
Rd

∣∣∣∣ ρ(x, θ0)

f3/2(x, θ0)

∣∣∣∣ (Efn(x)− f(x, θ0))2dx→ 0 as n→ +∞.

So,

| Rn(θ0) |→ 0 a.s when n→ +∞.

Now, we are studying the first term on the right hand side of relation (5).
By using Assumptions (A1), (A3) and (B1), we show that

ncτα
∫
Rd
|ρ(x, θ0)| (Efn(x)− f(x, θ0))dx→ 0 as n→ +∞.

On the other hand, we have
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Gn (x,Xi) =

+∞∑
`1,...,`d=0

c
`1,...,`d

(x)∏d
j=1 `j !

d∏
j=1

H`j (X
(j)
i )

=

+∞∑
`1,...,`d=0
`1+...+`d=τ

c
`1,...,`d

(x)∏d
j=1 `j !

d∏
j=1

H`j (X
(j)
i ) +

+∞∑
`1,...,`d=0

`1+...+`d≥τ+1

c
`1,...,`d

(x)∏d
j=1 `j !

d∏
j=1

H`j (X
(j)
i ).

Thus,

ncτα

Lτ/2(n)
(fn(x)− Efn(x)) =

ncτα

nνb
d/2
n Lτ/2(n)

∑
i∈In

1

b
d/2
n

(
K

(
x−Xi

bn

)
− EK

(
x−Xi

bn

))

=
L−τ/2(n)

nν−τα/2

∑
i∈In

+∞∑
`1,...,`d=0
`1+...+`d=τ

c
`1,...,`d

(x)∏d
j=1 `j !

d∏
j=1

H`j (X
(j)
i ) +

L−τ/2(n)

nν−τα/2

∑
i∈In

+∞∑
`1,...,`d=0

`1+...+`d≥τ+1

c
`1,...,`d

(x)∏d
j=1 `j !

d∏
j=1

H`j (X
(j)
i ).

By using the boundedness property of the kernel, Theorem 1.2A, Theorem 1.2B in
Major (2019) and Lemma 8 in Arcones (2000), we deduce that

L−τ/2(n)

nν−τα/2

∑
i∈In

+∞∑
`1,...,`d=0

`1+...+`d≥τ+1

c
`1,...,`d

(x)∏d
j=1 `j !

d∏
j=1

H`j (X
(j)
i )→P 0

when n→ +∞.

So

ncτα

Lτ/2(n)
(θ̂n − θ0)

and

L−τ/2(n)

nν−τα/2

∑
i∈In

+∞∑
`1,...,`d=0
`1+...+`d=τ

c
`1,...,`d∏d
j=1 `j !

d∏
j=1

H`j (X
(j)
i )

∫
Rd

ρ(x, θ0)

2f1/2(x, θ0)
dx

where

c
`1,...,`d

= max
x∈supp(K)

c
`1,...,`d

(x)

have the same distribution.
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By using Theorem 1.3 in Major (2019) and Theorem 6 in Arcones (1994), we con-
clude that

ncτα

Lτ/2(n)
(θ̂n − θ0)

converge in distribution to

+∞∑
`1,...,`d=0
`1+...+`d=τ

c`1,...,`d

∫
[−π,π]τ

∏ν

`=1

exp
(
i
(
x

(`)
1 + . . .+ x

(`)
τ

))
− 1

i
(
x

(`)
1 + . . .+ x

(`)
τ

) ZG(0),j(1|`1,...,`d)(dx1) . . .

ZG(0),j(τ |`1,,...,`d)(dxτ )

∫
Rd

ρ(x, θ0)

2f1/2(x, θ0)
dx.

This conclude the proof.
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