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Abstract. Efficacy and safety study is of practical importance in modern drug
development. It is a key component in evaluating the safety of food additives or
pesticides, and assessing the effectiveness and safety of drugs. In most of the var-
ious statistical procedures, homogeneity of variances among different dose levels
was required. This paper without a need for multiplicity adjustment proposes a
stepwise confidence set procedure for estimating Minimum Effective Dose (MED)
of drugs based on ratio of population means for normally distributed data under
heteroscedasticity. The procedure employed the Fieller (1954) method and obtained
individual (1−α)100% confidence intervals for identification of MED. The procedure
is applied to a data of an experiment that was published by Ruberg (1989) where
the effect of a new compound is measured by an increase in the weight of a par-
ticular organ in mice. Simulation study was carried out and results indicate that
the procedure controls the family-wise error rate (FWER) strongly. Power of the
procedure increases with increasing ratio of means and sample size.
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Résumé. (Abstract in French) L’étude de l’efficacité et de l’innocuité est d’une
importance pratique dans le développement moderne de médicaments. Il s’agit
aussi d’un élément clé dans l’évaluation de l’innocuité des additifs alimentaires ou
des pesticides. Dans la plupart des diverses procédures statistiques, l’homogénéité
des variances entre les différents niveaux de dose est souvent requise. Dans cet
article, il est proposé une procédure par étape pour établir des ensemble de
confiance étapes pour estimer la dose minimale efficace (DFD) des médicaments,
en présence d’hétéroscédécité, sans qu’il ne soit nécessaire de procéder à des
ajsustements multiples. La méthode est basée sur les rapports de moyennes et de
la taille de l’échantillon. Elle est ensuite appliquée à un jeu de données disponible
dans Fieller (1954). Dans cette application, l’effet d’un nouveau composé est
mesuré par une augmentation du poids d’un organe particulier chez la souris.
Une étude de simulation a été réalisée et les résultats indiquent que la procédure
contrôle fortement le taux d’erreur familial (FWER). La puissance de la procédure
augmente avec l’augmentation du rapport entre les moyennes et la taille de
l’échantillon.
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1. Introduction

One main objective of undertaking clinical dose-response studies is to identify
the minimum effective dose (MED) of drugs. MED is defined as the lowest dose
whose effect is significantly different from control Kong et al. (2014). The whole
process of drug development depends on the correct identification of the dose.
This is because, selecting too high a dose can give rise to an unacceptable
toxicity profile, while selecting a dose that is too low raises the possibility that the
medicinal drug provides insufficient evidence of effectiveness. In searching for the
lowest dose whose effect is significantly different from control, many statistical
methods have been developed under the assumption of normality and equality
of variances. Williams (1971) and Ruberg (1989) both proposed single-step pro-
cedures which identify MED consistently and frequently. Tamhane et al. (1996)
however noted that, stepwise procedures offer a more powerful alternative espe-
cially when the interest is only in testing but not to estimate confidence intervals.
Tamhane et al. (1996) therefore derived several step-down and step-up testing pro-
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cedures that are widely used in identifying MED. Bauer (1997), Bretz et al. (2003)
just to mention a few, developed methods to identify MED. Most of the articles
mentioned above proposed methods that used the standard quotation of p-values.
However, Hsu and Berger (1999) pointed out that the use of confidence intervals
should be preferred because they yield more information about the parameters
under investigation than a traditional p-value approach, and that confidence
set approach generates methods with meaningful guarantee against incorrect
decision.

Under homogeneity of variances assumption, Hsu and Berger (1999) consid-
ered inferences based on differences of treatment means and developed a
stepwise confidence set procedure for successive multiple comparisons of dose
groups against a control. The problem of heteroscedasticity can arise in clinical
dose-response studies since certain biological factors can cause patients in
different groups to respond differently with a change of dose level. By employ-
ing Stein’s two-stage sampling method, Tao et al. (2002) proposed a stepwise
confidence interval procedure for identifying MED under heteroscedasticity.
Using stochastic ordering, Wang and Peng (2014) also established a step-up
test procedure to estimate MED under the assumption of unequal variances.
Both Tao et al. (2002) and Wang and Peng (2014) considered inferences based
on difference of treatment means. Medical interpretation of margins based on
ratios can easily be made as compared to inferences based on differences. For
example, Hauschke and Kieser (2001) stated that the ratio formulation addresses
the question, “Is at least Q% of the effectiveness of the reference preserved by the
investigated treatment?” In addition to the medical interpretational convenience,
Laster and Johnson (2003) demonstrated that the ratio formulation approach
is more powerful in the test for non-inferiority of an experimental therapy as
compared to that of the difference. Usually when dealing with log-normally
distributed data, logarithmic transformation of the ratio test problem can lead
to an acceptance range formulated in terms of the difference of means. However,
there are many situations that require ratio test formulation in which the (un-
transformed) observations of the primary variable follow a normal distribution.
Bretz et al. (2003) considered the case of relevance shifts defined in terms of a
ratio of population means, where the original, untransformed data are normally
distributed under homoscedasticity.

In this paper, we provide a procedure for identification of the MED when the
ratio of treatment versus control is of interest for normally distributed data
under heteroscedasticity. The proposed method extends the procedure proposed
by Hsu and Berger (1999) into a stepwise confidence set procedure without
multiple adjustments by incorporating the partitioning principle. The article is
organized as follows. In Section 2, the preliminaries give the problem formulation
and define the notation. It also defines the intersection-union principle and
Hsu and Berger (1999) stepwise confidence method which will be essential to
the proposed procedure. The new stepwise confidence interval procedure with
unequal variances will be developed in Section 3. Also in Section 3, we apply the
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proposed procedure to examine a real data set. Simulation studies are carried out
to assess the power and familywise error rate (FWER) of the proposed procedure.
Finally, conclusions are given in Section 4.

2. Statistical background

For i = 0, 1, . . . , k and j = 1, . . . , ni, let Xij denote the jth observation at the ith dose
level in a one-way layout. Assume that Xij are observed responses of the efficacy
of the jth subject in the ith dose group. Assume also that Xij are independent
and follows normal distribution with means E(Xij) = µi, and possibly unequal
variances V ar(Xij) = σ2

i . The estimators for the means and variances are denoted
by X̄i, and σ̂2

i respectively.

The problem of interest is to provide a procedure for the estimation of ratios of
unknown means µi, i = 0, 1, . . . , k. Without loss of generality and for the purpose
of this research, let large values of treatment means µi relative to the mean of
placebo µ0 denote high efficacy. Suppose that k doses are tested against a placebo,
let γi = µi/µ0, i = 1, . . . , k, be the ratios of interest. Let δ be some pre-specified
threshold constant for efficacy of a drug. We formulate the problem of identifying
the MED as follows:

H0i : γi ≤ δ versus Hai : γi > δ for i = 1, . . . , k (1)

Suppose the random sample Xij observed from the ith dose level has a distribution
determined by a parameter θ = (γ1, . . . , γk) with θ ∈ Θ. If Θ is the parameter space
with Θc

i = {θ : γi > δ}, i = 1, . . . , k, we can rewrite (1) as follows:

H0i : θi ∈ Θi versus Hai : θi ∈ Θc
i for i = 1, . . . , k (2)

The article aim to solve the testing problem (2) and make inference for MED by ex-
tending the concept of directed confidence set proposed by Hsu and Berger (1999).
For our procedure to control the probability of declaring an ineffective dose to
be effective, we will introduce the intersection-union principle introduced by
Berger (1982). The Intersection-Union Principle involves testing the union of the
individual hypotheses against the intersection of the alternative hypotheses.
Thus, if Θi is a level α test of H0i for i = 1, . . . , k, then the intersection-union test with
rejection region Θc

i is a level α test of H0 =
⋃k
i=1 Θi against Ha =

⋂k
i=1 Θc

i .
The major reason behind the intersection–union test is that, when the global null
hypothesis H0 is rejected then each of the individual null hypotheses H0i are re-
jected. When the intersection-union test is featured, it cancels a need for multi-
plicity adjustment. This is because; if each individual test is performed at level α,
the global test is also performed at level α.
Assume Θi = {θ : γi ≤ δ}, i = 1, . . . , k, are subsets of Θ. Let Θ0 =

⋃k
i=1 Θi. Note also

that the Θc
0 =

⋂k
i=1 Θc

i . Problem (2) becomes:

H0 : θ ∈
k⋃
i=1

Θi versus Ha : θ ∈
k⋂
i=1

Θc
i (3)
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The efficacy problem (3) is interpreted as follows: if H0 is rejected at m(1 < m < k),
then there is evidence that doses i, (i ≥ m+ 1) are effective. And we take the lowest
dose i for which H0 is rejected as the MED. If a procedure of testing (3) controls
the FWER at α, then the probability of declaring a dose as the MED when either
it or a higher dose is ineffective is no more than α.

Definition 2.1. Let Θ∗ ⊂ Θ the parameter space. A confidence set, C(X), for θ is
directed towards Θ∗ if, for every sample point X either Θ∗ ⊂ C(X) or C(X) ⊂ Θ∗.

For a one sided significant ratio inference, say Θc
i = {µi > µ0δ}, confidence intervals

for γi = µi/µ0 of the form Ci(X) are directed toward Θc
i for i = 1, . . . , k.

In this article, we consider cases with inferences θ ∈ Θc
i and propose a method

that provides confidence intervals Ci(X) for θ in a stepwise fashion. Our procedure
stops at the first i whenever Ci(X) 6⊂ Θc

i . To validate our procedure, we partition
the parameter space Θ =

⋃k
i=1 Θi into disjoint sets Θ∗1,Θ

∗
2, . . . ,and Θ∗k such that

for some index set K, the set Θ∗k ⊆ Θ : k ∈ K and Θ∗k ∩ Θ∗k′ = φ for any k, k′ ∈ K
with k 6= k′. Partitioning the parameter space into disjoint sets makes it possible
for exactly one partition to contain the true parameter θ. This controls FWER by
controlling FWER within each Θ∗k ⊆ Θ : k ∈ K.

The following section provides a procedure for identification of the MED. Later,
we apply the proposed procedure to examine a real data set and then perform
simulation studies to assess the power and FWER of the procedure.

3. Results

3.1. The proposed stepwise confidence interval procedure

Consider the problem of identifying MED in problem (3), we first define the
MED as min{i : γi > δ}. We employed Fieller’s (1954) method and obtained
individual (1 − α)100% confidence intervals Ci(X) for γi. Since X̄i and σ̂2

i are
the sample mean and sample variance of the ith group, i = 0, 1, . . . , k, we test
H0 : θ ∈

⋃k
i=1 Θi verses H1 : θ ∈

⋂k
i=1 Θc

i using the test statistics:

TXi =
X̄i − δX̄0√
σ̂2
i

ni
+

δ2σ̂2
0

n0

,

where

X̄i =

ni∑
j=1

Xij/ni and σ̂2
i =

k∑
i=0

ni∑
j=1

(Xij − X̄i)
2

/
k∑
i=0

(ni − 1).

The TXi rejects H0, if TXi > t1−α,vi , is the (1− α) percentile of the k-variate central
t-distribution with vi degrees of freedom. The degrees of freedom was stated in

Journal home page: http://www.jafristat.net, www.projecteuclid.org/euclid.as,
www.ajol.info/afst



E. D. Kpeglo, M. J. Adjabui J. Dioggban, Afrika Statistika, Vol. 16 (2), 2021, 2719 - 2731.
Identification of Minimum Effective Dose based on Ratio of Normally Distributed Data
under Heteroscedasticity. 2724

Welch (1938) and improved in Satterthwaite (1946). These different degrees of
freedom are given by:

vi =

(
σ̂2
i

ni
+

δ2σ̂2
0

n0

)2

(
σ̂4
i

n2
i (ni−1)

+
δ4σ̂4

0

n2
0(n

0
−1)

)
Note that the degrees of freedom are not exact but estimated because they depend
on unknown group variances. Suppose increasing values of the endpoint represent
a higher effect of treatment, the decision rule is to reject H0, if TXi > t1−α,vi . The
lower limits for the confidence intervals of interest Ci(X) are derived to be the
smaller root of the quadratic equation (TXi )2 = t21−α,vi . These lower confidence
limits are given by:

Bi(X) =
X̄ i X̄ 0

−
√
a0 X̄

2
i

+ ai X̄
2
0
− aia0

X̄
2
0
− a0

And the (1−α)100% confidence intervals Ci(X) for γi are obtained to be as follows:
Ci(X) = (Bi(X),∞), where ai = σ̂2

i t1−α,vi/ni, i = 1, . . . , k and a0 = σ̂2
0t1−α,vi/n0 .

The proposed stepwise confidence interval procedure takes the following form:

Step 1
If Ck(X) ⊂ (δ,∞) then assert γk ∈ (δ,∞) and go to step 2. Otherwise conclude
γk ∈ Ck(X) and stop.
Step 2
If Ck−1(X) ⊂ (δ,∞) then assert γk−1 ∈ (δ,∞) and go to step 3. Otherwise conclude
γk−1 ∈ Ck−1(X) and stop.
...
Step k-1
If C2(X) ⊂ (δ,∞) then assert γ2 ∈ (δ,∞) and go to step k. Otherwise conclude
γ2 ∈ C2(X) and stop.
Step k
If C1(X) ⊂ (δ,∞) then assert γ1 ∈ (δ,∞) and go to step k+1. Otherwise conclude
γ1 ∈ C1(X) and stop.
Step k+1

Conclude min{i : γi} > min

{
i :

X̄ i X̄0
−
√
a
0 X̄

2
i
+a

i X̄
2
0
−a

i
a
0

X̄
2
0
−a

0

}
with i = 1, . . . , k.

The above algorithm starts with the highest dose k and in a descending order,
sequentially examines the efficacy of each step. Once a statistically insignificant
treatment effect is found, we take the lowest dose i for which global hypothesis
is rejected as the MED. The flow-chart of the procedure presented above is
summarized in Theorem 1.
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Theorem 1. LetXi1, Xi2, . . . , Xini be the observed data from the ith dose level having
a distribution determined by the parameter vector θ = (γ1, . . . , γk) with θ ∈ Θ, the
parameter space. Let θ ∈ Θc

i = {θ : γi > δ}, i = 1, . . . , k be a multiple comparison of
interest. Let confidence set Ci(X) for θ be based on a set of data X such that Ci(X) is
directed toward subsets Θc

i ⊆ Θ. Assume that the stepwise procedure stops at step
M , that is, M is the smallest integer i such that Ci(X) 6⊂ Θc

i if such i (1 ≤ i ≤ k) exists;
otherwise, let M = k + 1. Furthermore, let Θ0 = φ, Θk+1 = Θ, and

C(X) = Θc
0 ∩Θc

1 ∩ . . . ∩Θc
M−1 ∩ CM (X).

Then for all θ ∈ Θ,
P (θ ∈ C(X)) ≥ 1− α.

The proof of Theorem 1 is given in appendix A.

3.2. Example

To illustrate the application of the stepwise confidence procedure, we consider
the data of an experiment that was published by Ruberg (1989) and also used by
Tao et al. (2002). The goal of the study is to measure the effect of a new compound
by the gain in weight of a particular organ in mice. The summary statistics for a
control group and four equally spaced dose groups is given in Table 1. The sample
size in the five groups is equal to 12. The variable of interest is the ratio of mean
response to the mean of the zero dose. A large value of this ratio is regarded as
effective with a threshold of a 10% average increase over its value for the zero dose.
Thus, we take δ = 1.1. The assumption of normality of the data and heterogeneity
of variances across the dose groups are satisfied (see Tao et al. (2002)). If δ = 1.1
and α = 0.05, then Table 2 shows the 95% lower confidence limits on µi/µ0,
i = 1, 2, 3, 4.

Table 1. (see, Ruberg (1989)). Summary Statistics for the Pharmacologic Effect of
an Experimental Compound on Relative Organ Weights in Mice

Dose (mg/kg/day) Mean ± standard deviation
Control 6.20 ± 3.08

10 6.14 ± 2.32
20 6.54 ± 2.77
30 7.67 ± 2.32
40 9.37 ± 1.87

Table 2 shows that the lower confidence limits for the dose groups 10 mg/kg/day,
20 mg/kg/day, and 30 mg/kg/day are lower than the relevance threshold. Thus,
all these three doses except 40 mg/kg/day are declared to be statistically insignif-
icant at level α. The MED is correctly specified, if and only if Cj(X) ⊂ (δ,∞) and
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Table 2. 95% Lower Confidence Limits for µi/µ0, i = 1, 2, 3, 4

Dose (mg/kg/day) Lower confidence limit
10 0.6848
20 0.7126
30 0.8877
40 1.1246

Ci−1(X) 6⊂ (δ,∞) for j = i, . . . , k.

C4(X) = (1.1246,∞) ⊂ (1.1,∞) we reject H04 (40 mg/kg/day is effective)

C3(X) = (0.8877,∞) 6⊂ (1.1,∞) we do not reject H03 (30 mg/kg/day is ineffective)

C2(X) = (0.7126,∞) 6⊂ (1.1,∞) we do not reject H02 (20 mg/kg/day is ineffective)

C1(X) = (0.6848,∞) 6⊂ (1.1,∞) we do not reject H01 (10 mg/kg/day is ineffective)

In this analysis, our stepwise procedure concluded that the doses 10 mg/kg/day,
20 mg/kg/day and 30 mg/kg/day are ineffective at level α. Furthermore, the 40
mg/kg/day dose and any available higher dose are regarded as effective. Therefore
40 mg/kg/day is recommended as the minimum effective dose (MED).

3.3. Simulation studies

3.3.1. FWER study

FWER is strongly controlled when α∗ = supH0i
[Pr{any H0i is rejected (1 ≤ i ≤ k)}]

and max(α∗) ≤ α. Here the test statistics TXi rejects H0i for H0i : θi ∈ Θi versus Hai :
θi ∈ Θc

i when Ci(X) ⊂ Θc
i . Control of FWER is critical in dose finding because the

FWER for H0i is assumed to conclude that a clinically relevant treatment effect is
present when in fact it is not Hochberg and Tamhane (1987). In this section, we
assess the performance of our procedure based on FWER using simulation. The
simulation study was conducted to determine the robustness of our procedure
at nominal level of 0.025. We used R software for the computation and set the
number of iterations at 1,000,000. We also compared FWERs generated from
a normal distribution based on the assumption of equal variance among all
groups(HOM) alongside unequal variances across dose groups(HET). The result
(given in Table 3) indicated that our procedure successfully controls the FWER
for HET. However, in the case of HOM, all the simulated values for the FWER
exceeds the nominal level of 0.025 and therefore controlling FWER poorly. Our
heteroscedastic procedure is therefore robust.
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Table 3. Simulated FWER results for δ = 1.1, α = 0.025, n0 = 8, µ0 = 6.2, µ1 = 6.75,
σ0 = 3.08, σ1 = 2.32

n1 HET HOM
10(11) 0.0224(0.0224) 0.0274(0.0286)
12(13) 0.0229(0.0231) 0.0302(0.0315)
14(15) 0.0229(0.0229) 0.0323(0.0332)
16(17) 0.0232(0.0230) 0.0343(0.0353)
18(19) 0.0235(0.0231) 0.0367(0.0368)
20(21) 0.0232(0.0233) 0.0377(0.0384)
22(23) 0.0233(0.0231) 0.0390(0.0396)
24(25) 0.0236(0.0229) 0.0407(0.0406)
26(27) 0.0233(0.0234) 0.0414(0.0420)
28(29) 0.0231(0.0234) 0.0424(0.0431)
30(31) 0.0233(0.0233) 0.0434(0.0438)
32(33) 0.0234(0.0233) 0.0442(0.0447)
34(35) 0.0235(0.0235) 0.0454(0.0456)

Table 4. Simulated power results for α = 0.025, δ = 1.2, 1.3, 1.4, 1.5, 1.6

Ratio(γ) 1.2 1.3 1.4 1.5 1.6
0.8 0.7489 0.5359 0.3368 0.1912 0.1010
0.9 0.8659 0.6907 0.4848 0.3041 0.1749
1.0 0.9385 0.8173 0.6347 0.4395 0.2761
1.1 0.9760 0.9052 0.7661 0.5821 0.3995
1.2 0.9920 0.9571 0.8659 0.7144 0.5338
1.3 0.9978 0.9831 0.9316 0.8225 0.6640
1.4 0.9995 0.9943 0.9691 0.9002 0.7768
1.5 0.9999 0.9983 0.9877 0.9495 0.8641

Table 5. Simulated power results for δ = 1.7, n0 = ni = 10, 15, 20, 25, 30

Ratio(γ) 10 15 20 25 30
0.8 0.0509 0.0604 0.0693 0.0778 0.0861
0.9 0.0946 0.1266 0.1581 0.1894 0.2205
1.0 0.1610 0.2313 0.3001 0.3667 0.4301
1.1 0.2521 0.3719 0.4817 0.5787 0.6621
1.2 0.3645 0.5320 0.6671 0.7697 0.8443
1.3 0.4899 0.6870 0.8184 0.8991 0.9459
1.4 0.6160 0.8144 0.9172 0.9653 0.9861
1.5 0.7307 0.9033 0.9688 0.9907 0.9974

3.3.2. Power calculation

Confidence interval procedures for analyzing clinical trials are frequently becoming
insufficient in the design of clinical studies. Power calculation has therefore become
a major task in the design phase of a clinical study. This article considers the
correct estimation of minimum effective dose i, i = 1, · · · , k, for normally distributed
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data. The MED is correctly specified if and only if Cj(X) ⊂ (δ,∞) and Ci−1(X) 6⊂
(δ,∞) for j = i, ..., k. Thus

P (MED = i) = P

(
k⋂
j=i

{
TXj > t1−α,vi

}
∩
{
TXi−1 ≤ t1−α,vi

})
. (4)

Here, we define power as the probability of correctly estimating any of the doses,
i, to be the true MED. This is the same as finding the probability of rejecting at
least one of the false hypotheses. Equation (4) will therefore be expressed as

P (rejectingH0j , i ≤ j ≤ k) = P

(
k⋂
j=i

{
TXj > t1−α,vi

})
(5)

where

vi =

(
σ̂2
i

ni
+

δ2σ̂2
0

n
0

)2

(
σ̂4
i

n2
i (ni−1)

+
δ4σ̂4

0

n2
0(n

0
−1)

) .
Simulation study is performed in order to assess the impact of several parameters
on the power to estimate the true MED. Results for different ratio of means,
clinical relevance margins, and the sample sizes are presented in Tables 5 and
5 respectively. In Table 4, power increases with increasing ratio of means and
decreases for higher clinical relevance margins while in Table 5, power increases
with increase in both the ratio of means and sample size. These simulation results
indicated a very good performance for our approach.

4. Conclusions

In this paper, we considered a general way of obtaining stepwise confidence
intervals for the ratio of means under heteroscedasticity. Many testing procedures
have been proposed to identify the MED of drugs under the assumption of equal
variance. The main difficulty with most of these procedures is that they fail to
address problems where the assumption of equal variance is not practicable
due to certain biological factors. In many standard situations, inferences on
differences are also not a suitable way to investigate the data. Ratios, therefore,
are often a better alternative measure of efficacy and often easier to interpret.
The strength of the proposed procedure is to provide stepwise confidence in-
tervals using an extended intersection-union principle which in effect cancels
a need for multiplicity adjustment. Simulation study is carried out to assess
the performance of the proposed procedure. It is found that all the stepwise
confidence intervals control FWER. Simulation study results also indicated that
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the power of the procedure increases with increasing ratio of means and sam-
ple size. Meanwhile the power decrease with increase in clinical relevance margins.

Appendix A: Proof of Theorem 1

Consider the following sets Θ∗1,Θ
∗
2, . . . ,Θ

∗
k+1, as partitions of the parameter space Θ.

Θ∗1 = Θ1

Θ∗2 = Θ2 ∩Θc
1

...
Θ∗i = Θi ∩Θc

1 ∩ . . . ∩Θc
i−2 ∩Θc

i−1

...
Θ∗k = Θk ∩Θc

1 ∩ . . . ∩Θc
k−2 ∩Θc

k−1

Θ∗k+1 = Θk+1 ∩Θc
1 ∩ . . . ∩Θc

k−1 ∩Θc
k

If θ ∈ Θ∗i then clearly a 100(1− α)% confidence set for θ will be

C(X) =

k+1⋃
i=1

(Ci(X) ∩Θ∗i ). (6)

For all i < M (if such i exists) Ci(X) ∩Θ∗i = φ since Θ∗i ⊂ Θi. Then

C(X) =

k+1⋃
i=M

(Ci(X) ∩Θ∗i ). (7)

Similarly, for all i > M (if such i exists) we have Θ∗i ⊂ Θc
0 ∩ . . . ∩ Θc

M−1 ∩ Θc
M and

equation (7) becomes:

C(X) =

k+1⋃
i=M

(Ci(X) ∩Θ∗i )

⊂ (CM (X) ∩Θ∗M ) ∪ (Θc
0 ∩ . . . ∩Θc

M−1 ∩Θc
M ) (8)

= (Θc
0 ∩ . . . ∩Θc

M−1 ∩ΘM ∩ CM (X)) ∪ (Θc
0 ∩ . . . ∩Θc

M−1 ∩Θc
M )

If M < k + 1, then Θc
M ⊂ CM (X) and CM (X) 6⊂ Θc

M will imply Θc
M ⊂ CM (X). Hence

C(X) =

k+1⋃
i=M

(Ci(X) ∩Θ∗i )

⊂ (CM (X) ∩Θ∗M ) ∪ (Θc
0 ∩ . . . ∩Θc

M−1 ∩Θc
M )

= (Θc
0 ∩ . . . ∩Θc

M−1 ∩ΘM ∩ CM (X)) ∪ (Θc
0 ∩ . . . ∩Θc

M−1 ∩Θc
M )

= (Θc
0 ∩ . . . ∩Θc

M−1 ∩ΘM ∩ CM (X)) ∪ (Θc
0 ∩ . . . ∩Θc

M−1 ∩ CM (X))

= (Θc
0 ∩ . . . ∩Θc

M−1 ∩ΘM ∩ CM (X)) (9)
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For all θ ∈ Θ∗i ,

P (θ ∈ C(X)) = P (θ ∈ (Ci(X) ∩Θ∗i ))

= P (θ ∈ Ci(X)) ≥ 1− α.

This completes the proof of Theorem 1. �
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