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Abstract. In this paper, we propose an Adaptive Realized Hyperbolic GARCH (A-
Realized HYGARCH ) process to model the long memory of high-frequency time se-
ries with possible structural breaks. The structural change is modeled by allowing
the intercept to follow the smooth and flexible function form introduced by Gallant
(1984). In addition, stability conditions of the process are investigated.
A Monte Carlo study is considered in order to illustrate the performance of the A-
Realized HYGARCH process compared to the Realized HYGARCH with or without
structural change.

Résumé. Dans cet article, nous proposons un modèle hyperbolique GARCH réalisé
adaptatif (A-Realized HYGARCH ) pour modéliser la longue mémoire des séries
chronologiques á haute fréquence avec d’éventuelles changements de régimes. Le
changement de régime est modélisé, en permettant l’intercepte de suivre une forme
de fonction lisse et flexible introduite par Gallant (1984). De plus, les conditions
de stabilité pour ce modèle sont établies dans ce papier. Une étude de Monte Carlo
est considérée afin d’illustrer les performances du modèle (A-Realized HYGARCH )
comparé au modèle HYGARCH Realisé sur des données avec ou sans changement
structurel.
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Abdou Kâ Diongue :abdou.diongue@ugb.edu.sn



E.H. Sall, E. H. Deme and A.K. Diongue, Afrika Statistika, Vol. 16 (1), 2021, pages 2629 -
2645. Adaptive Realized Hyperbolic GARCH Process: Stability and Estimation. 2630

1. Introduction

The volatility forecast of asset returns is very important for option pricing as
well as for risk management. The Autoregressive Conditional Heteroskedasticity
(ARCH ) models introduced by Engle (1982) and generalized by Bollerslev (1986)
are widely used to study the properties of volatility for economic and financial data.

However, there are several shortcomings with using the Generalized ARCH
(GARCH ) models for risk management or forecasting volatility. The major
issue is the persistence of variance that evolves over time and that the
GARCH model cannot handle . It has been extensively observed and stud-
ied in various fields of economic and finance over the last decades (See
Aggarwal et al. (1999), Fan et al. (2008), Granger and Hyung (204)).

The long memory exists in the studies of the volatility of high-frequency for fi-
nancial time series Richard et al. (1996), Michael et al. (1993), Ding et al. (1993),
Granger and Ding (1996). A widely accepted definition of long memory is

V ar(ST ) = O(T 2d+1),

where

ST =

T∑
t=1

yt,

yt is a sequence of financial series and T is the number of observations, d is the
long-memory parameter Diebold and Atsushi (2001).

To overcome this problem, many models are introduced in the literature.
Among others, we can cite the Fractionally Integrated GARCH (FIGARCH )
model proposed by Richard et al. (1996), the Seasonal-HYGARCH model by
Diongue and Guegan (2007), the New HYGARCH by Li et al. (2015) and the Hy-
perbolic GARCH (HYGARCH ) proposed by Davidson (2004).

Moreover, as stated by Hansen et al. (2012) and discussed by
Andersen et al. (2003), a single return offers only a weak signal about the
current level of volatility. Thus, the implication is that GARCH models are poorly
suited for situations where the volatility changes rapidly to a new level. The reason
is that the GARCH model is slow at catching up, and it will take many periods for
the conditional variance to reach its new level.

Therefore, by incorporating the realized measures in the GARCH model, one can
alleviates this problem. In addition, with the advent of high-frequency data, several
measures have been developing in the literature, such as the Realized Variance
and Realized Kernel, among many others (see Andersen and Bollerslev (1998),
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Barndorff-Nielsen and Shephard (2002) and Barndorff-Nielsen et. al. (2008)).

All of these measures provide more information on the current level of volatility
compare to the square of returns. This aspect makes the realized measures very
important in modeling and forecasting future volatility. Therefore, by introducing
the GARCH-X model, Engle (2002) incorporated the realized measures in the
GARCH model. Hansen et al. (2012) introduced the Realized GARCH model by
combining a GARCH structure for returns with an integrated model for realized
measures of volatility. From this latter, several models have emerged. For example,
Hansen and Zhuo (2016) introduced the Realized EGARCH to capture the leverage
effects. To highlight the property of long memory observed on the realized mea-
sure, Vander Elst(2015), introduced the FloGARCH model (Fractionally integrated
realized volatility GARCH ) and more recently, Sall et al. (2021) proposed the
Realized HYGARCH model for modeling risk.

Nevertheless, as stated by Si and Yang (2018), although these mod-
els bring some improvements, they have the same main weakness as
the original GARCH model. This limit is the assumption that the con-
ditional volatility has only one regime over the entire period. Further-
more, many studies show that structural change is common in finan-
cial datasets (see Beltratti and Morana (2006), Engle and Rangel (2008)).
Diebold and Atsushi (2001) argue that the existence of structural change or
stochastic regime-switching is not only related to the long memory, and they are
generally easily confused. Therefore, a more appropriate volatility model would
consider the long memory and the structural change simultaneously, (see, eg.
Richard and Morana (2009), Si and Yang (2018).)

The aim of this work is to investigate an Adaptive Realized HYGARCH (A-Realized
HYGARCH ) model. This paper starts from the proposition that both long memory
and structural breaks are likely to be present in the volatility processes of many
economic and financial time series. It is designed for modeling the long memory
of high-frequency financial time series with structural changes. This model
incorporates the structure of the new HYGARCH model of Li et al. (2015), further
considering the time-varying deterministic component in the flexible, functional
form provided by Gallant (1984).

This paper is organized as follows. Section 2 is dedicated to our proposed solution,
the adaptive Realized HYGARCH model with structural breaks, while in section
3, we study the stability of the model. Section 4 is reserved for the simulation of
the experiment we did to evaluate our model. Section 5 concludes this paper and
gives some future works.
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2. Adaptive Realized Hyperbolic GARCH

In this section, we present the Adaptive Realized HYGARCH model which takes into
account structural changes and long memory of high-frequency data. Indeed, the
incorporation of structural change in the long memory model is not a new idea in
the literature. Richard and Morana (2009) presented the Adaptive Fractional Inte-
grated GARCH (A-FIGARCH ) model, which is designed for both long memory and
regime change in financial time series. Si and Yang (2018) developed also the adap-
tive Hyperbolic Exponential GARCH model. Following this methodology, we propose
in this paper the Adaptive Realized HYGARCH model which contains two compo-
nents: a long memory part and a deterministic time varied function. The adaptive
Realized HYGARCH (p, q, d, k) model can be expressed as:

rt = h
1/2
t zt, (1)

log ht = ωt + δ

[
1− 1− γ(L)

1− β(L)
(1− L)d

]
log xt, (2)

log xt = ξ + φ log ht + τ(zt) + ut, (3)

where

ωt = ω0 +

k∑
j=1

[aj sin(2πjt/T ) + bj cos(2πjt/T )] ,

with

d ≥ 0 and 0 ≤ δ ≤ 1.

rt is the return of the time series, xt a realized measure of volatility, (zt)t are inde-
pendently identically distributed (i.i.d) with mean zero and variance one, ht is the
conditional variance and (ut)t are also i.i.d with mean zero and variance σ2

u. Here
(zt)t and (ut)t are mutually independent. We label Equation (1) as return equation,
Equation (2) as the GARCH model and Equation (3) as the measurement statement.

L denotes the lag or backshift operator

β (L) = β1L+ β2L
2 + · · ·+ βpL

p

and

γ (L) = γ1L+ γ2L
2 + · · ·+ γqL

q.

The polynomial

τ (z) = τ1z + τ2
(
z2 − 1

)
Journal home page: http://www.jafristat.net, www.projecteuclid.org/euclid.as,

www.ajol.info/afst



E.H. Sall, E. H. Deme and A.K. Diongue, Afrika Statistika, Vol. 16 (1), 2021, pages 2629 -
2645. Adaptive Realized Hyperbolic GARCH Process: Stability and Estimation. 2633

is called the leverage function and facilitate a modeling of the dependence between
return shocks and volatility shocks.
The main difference between the A-Realized HYGARCH model and the conventional
Realized HYGARCH model is the inclusion of the time-varying intercept (ωt). The
A-Realized HYGARCH model can be reduced to the standard Realized HYGARCH
model by setting

ωt = ω0(1− β(1))−1

if all the roots of the polynomials

1− β (L)

lie outside the unit circle.

In the rest of this study, we consider the A-Realized HYGARCH(1, d, 1, k) model. The
GARCH equation is given by:

log ht = ωt + δ

[
1− 1− γL

1− βL
(1− L)d

]
log xt. (4)

The fractional differencing operator has the following representation:

(1− L)
d

=

∞∑
k=0

Γ (d+ 1) (−L)
k

Γ (k + 1) Γ (d− k + 1)
, (5)

where Γ(.) denotes the Gamma function.

3. Stability

The stability of the model is one of the main property for any new model. Here,
the stability refers to the behavior of the second moment of the model. In this
section, we show that the second moment of the A-Realized HYGARCH model is
asymptotically bounded under some conditions. The second moment of the model
is calculated as

E(r2t ) = E(htz
2
t ) = E(ht).

We have

log ht = δ log h1,t,

where
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log h1,t = β log h1,t−1 −
β

δ
ωt−1 +

1

δ
ωt + (β − γ + π1) log xt−1

+

∞∑
j=0

(πj+2 − γπj+1)Lj log xt−2 (6)

and

log ht = δβ log h1,t−1 − βωt−1 + ωt + δ(β − γ + π1) log xt−1

+δ

∞∑
j=0

(πj+2 − γπj+1)Lj log xt−2. (7)

Lemma 1. If nj and mj are the non negative numbers with j ∈ {1,2,· · · ,k } such that

k∑
j=1

(nj +mj) ≤ min(1, ω0),

then

0 ≤ ωt = ω0 +

k∑
j=1

[aj sin(2πjt/T ) + bj cos(2πjt/T )] ≤ 1 + ω0 + 1 = c0.

Proof. For the proof of Lemma 1, one can refer to Uwilingiyimana et al. (2020).

We also have:

Lemma 2. Let (V, ||.||∞) be a normed space such that,

V =

{
(yt)t∈Z| sup

t∈Z
E|yt| ≤ ∞

}
and L be a linear operator on V defined by:

L : V → V

y → Ly = (Lyt)t∈Z = (yt−1)t∈Z ,

with

||L||∞ = sup
t∈Z

E|yt|,

then the delayed operator satisfies

||Li||∞ = 1 ∀i ∈ N.
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proof. For the proof of Lemma 2, one can refer to Uwilingiyimana et al. (2020).

Theorem 1. The conditional variance log ht of A-Realized HYGARCH model satisfies
this follow inequality

E(log ht) ≤ |δβ|+ f0 + δφ|β − γ + π1|E(log ht−1) + δφ

∞∑
j=0

|πj+2 − γπj+1|E(log ht−2)

where

f0 = c0(1− |β|) + ξδ|β − γ + π1|+ ξδ

∞∑
j=0

|πj+2 − γπj+1|

Proof. Using the equation (7), the expectation of log ht is given by:

E(log ht) = δβE(log h1,t−1)− βE(ωt−1) + E(ωt) + δ(β − γ + π1)E(log xt−1)

+δ

∞∑
j=0

(πj+2 − γπj+1)LjE(log xt−2). (8)

Since

E(log xt) = ξ + φE(log ht),

then by using Lemma 1 and Lemma 2, an upper bound of (8) is calculated as
follows:



E(ωt) ≤ c0,

δβE(log h1,t−1) ≤ |δβ|E(log h1,t−1),

δ(β − γ + π1)E(log xtωt) ≤ δ|(β − γ + π1)|(ξ + φE(log ht)),

δ
∑∞
j=0(πj+2 − γπj+1)LjE(log xt) ≤ δ

∑∞
j=0 |(πj+2 − γπj+1)|(ξ + φE(log ht)).

By substituting the above results in (8), we get

E(log ht) ≤ |δβ|+ f0 + δφ|β − γ + π1|E(log ht−1) + δφ

∞∑
j=0

|πj+2 − γπj+1|E(log ht−2).
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�

Now, considering the A-Realized Hyperbolic GARCH process, we have

E(log ht) ≤ |δβ|E(log h1,t−1) + f0 + δφ|β − γ + π1|E(log ht−1)

+δφ

∞∑
j=0

|πj+2 − γπj+1|E(log ht−2), (9)

and

E(log h1,t) ≤ |β|E(log h1,t−1) + f1 + φ|β − γ + π1|E(log ht−1)

+φ

∞∑
j=0

|πj+2 − γπj+1|E(log ht−2), (10)

where f1 = f0/δ. Note that inequalities (9) and (10) can be rewritten in matrix form
as

Ht ≤M +BHt−1, (11)

with some initial condition H−1. Iterating inequality (11), we get

Ht ≤M
t−1∑
i=0

Bi +BtH0 = Dt. (12)

The matrices Ht, M and B are defined as follows:

Ht =

 E(log ht)
E(log h1,t)
E(log ht−1)

 ; M =

 f0f1
0


and

B =


φδ|δ(β − γ + π1)| |βδ| φδ

∑∞
j=0 |(πj+2 − γπj+1))|

φ|(β − γ + π1)| |β| φ
∑∞
j=0 |(πj+2 − γπj+1))|

1 0 0

 .
Lemma 3. Let δ, φ, β and γ be the parameters of the A-Realized HYGARCH model.
If


δφ|β − γ + π1|+ |β|+ φδ

∑∞
j=0 |πj+2 − γπj+1| − 1 ≤ 0

δφ|β − γ + π1|+ |β| ≤ 2,
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then the spectral radius of B, ρ(B) < 1.

Proof. Let show that the spectrum Λ(B) is not an empty set and its maximum
eigenvalue is strictly less than one.

B =


φδ|δ(β − γ + π1)| |βδ| φδ

∑∞
j=0 |(πj+2 − γπj+1))|

φ|(β − γ + π1)| |β| φ
∑∞
j=0 |(πj+2 − γπj+1))|

1 0 0


For sake of simplicity, let us rewrite the matrix B as

B =


a b c

a
δ

b
δ

c
δ

1 0 0


The characteristic polynomial of B is given by

PB(λ) = λ(−λ2 + (a+
b

δ
)λ+ c).

By solving the equation PB(λ) = 0, the eigenvalues of the matrix B are



λ1 = 0

λ2 = 1
2

[
(a+ b

δ )−
√

(a+ b
δ )2 + 4c

]

λ3 = 1
2

[
(a+ b

δ ) +
√

(a+ b
δ )2 + 4c

]
So

max{λ1, λ2, λ3} = λ3

that is,

ρ(B) =
1

2

(a+
b

δ

)
+

√(
a+

b

δ

)2

+ 4c

 .
The spectral radius of B is less than one if and only if the following condition are
satisfied
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{
a+ b

δ + c− 1 ≤ 0,
a+ b

δ ≤ 2.
(13)

We just have to replace a, b and c by their expressions in (13), where

a = φδ|(β − γ + π1),

b = |βδ|

and

c = φδ

∞∑
j=0

|(πj+2 − γπj+1))|.

Thus, (13) is rewritten as follows:
δφ|β − γ + π1|+ |β|+ φδ

∑∞
j=0 |πj+2 − γπj+1| − 1 ≤ 0

δφ|β − γ + π1|+ |β| ≤ 2
�

We also have:

Theorem 2. Let δ, φ, β and γ be the parameters of the A-Realized HYGARCH model.
If 

δφ|β − γ + π1|+ |β|+ φδ
∑∞
j=0 |πj+2 − γπj+1| − 1 ≤ 0

δφ|β − γ + π1|+ |β| ≤ 2,

then the process {rt} followings an A-Realized Hyperbolic GARCH model defined in
relations (1),(2) and (3) is asymptotically stable with finite variance.

proof. From (11) and (12), we recall that

Ht ≤M
t−1∑
i=0

Bi +BtH0 = Dt t ≤ 0.

According to the convergence matrix (see, Lancasterand Tismenetsky (1985)), the
necessary and sufficient condition for the convergence of Dt when t→∞ is ρ(B) <
1, by Lemma 3, suppose that the spectral radius is strictly less than one. Now we
show that if (I −B) exists, its inverse exists and
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t−1∑
i=0

Bi = (I −B)−1

as

lim
t→∞

BtH0 = 0.

The eigenvalues of (I−B) are (1−λ(B)), where λ(B) are the eigenvalues of matrix B.

The set of eigenvalues of (I −B) is not empty, hence matrix (1− λ(B)) is invertible.

Let

Sn = I +B +B2 + · · ·+Bn−1 =

n−1∑
i=0

Bi

and so

BSn = B +B2 + · · ·+Bn.

Hence,

(I −B)Sn = I −Bn.

By using the fact that

lim
n→∞

Bn = 0,

we can prove that

lim
n→∞

(I −Bn) = I.

We get

(I −B) lim
n→∞

Sn = I,

that is

lim
n→∞

Sn = (I −B)−1.
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More precisely

lim
n→∞

n−1∑
i=0

Bi = (I −B)−1 lim
t→∞

Bt = 0

as

lim
t→∞

Bt = 0,

under Lemma 3. We conclude that

lim
t→∞

Ht ≤ (I −B)−1M. �

4. Estimation

In this section, we report the Monte Carlo simulation evidence on the estima-
tion of our Adaptive Realized Hyperbolic GARCH model for Data Generating
Processes (DGP ). For all models used in this section, we assume that zt and ut
follow respectively the student T distribution with 3 degrees of freedom and the
normal distribution N (0, σu). We consider p = q = 1 and ω = 0.1, γ = 0.1, β = 0.4,
d = 0.25, 0.35, 0.45. , δ = 0.9, ε = 0, φ = 1, τ1 = −0.08, τ2 = 0.06, and σ2

u = 0.4. The three
values of the long memory parameter d are those proposed by Si and Yang (2018),
as low memory (d = 0.25), moderate memory (d = 0.35) and high memory (d = 0.45).

To obtain the DGP samples from Realized Hyperbolic GARCH with structural
change, we fellow the Step 1, Step 2 and Step 3 below. Notice that, step 3 acts
as the core part of this simulation study, and it must be repeated for each model
and each replication. Step 1 is also repeated for each replication while Step 2 only
needs to be performed once for each model. Following Si and Yang (2018), we con-
sider 500 Monte Carlo replications.

1. Step 1: Set zt v T (0, 1, ν) and ut v N (0, σu). We get an i.i.d sample {zt}Tt=m and
{ut}Tt=m, where m represents the number of extra burn in the data generated.

2. Step 2: Choose appropriate designs for the intercept term in each model. In this
step, we consider three different designs:
– Design 1: (m1) assumes a constant intercept ω = ωt = 0.1, and corresponds

to the standard experiment setting where no structural breaks are allowed
in the conditional variance.

– Design 2: (m2) adopts the permanent break structure used by
Richard and Morana (2009) and has one step change in the intercept.
The intercept jumps from 0.1 to 0.5 without bouncing back in the future.
Hence,

ωt =

{
0.1, t = 1, ...T2
0.5, t = T

2 + 1, ..., T
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Table 1. Simulation results for estimation of A-Realized HYGARCH model without
structural change.

A-Realized HYGARCH (1,d,1,0)
d Bias RMSE SE

0.25 0.0539 0.0932 0.0761
0.35 0.0409 0.0868 0.0765
0.45 0.0363 0.0760 0.0667

– Design 3: (m3) has two step changes. With the intercept jumping from 0.1
to 0.5 at the first break point and bouncing back to 0.3 at the second break
point. Hence,

ωt =


0.1, t = 1, ...T3
0.5, t = T

3 + 1, ..., 2T3
0.3, t = 2T

3 + 1, ..., T.

3. Step 3: The sample {rt}Tt=1 and {xt}Tt=1 are obtained by using the specification
Realized ARCH (∞).

The log-likelihood function is applied on the models used in this paper can be
described as follows:

l (r, x; θt) = −
n∑
t=1

[
A (ν) + log (π (ν − 2)) + 0.5 log (ht) +

ν + 1

2
log

(
1 +

r2t
ht (ν − 2)

)]
︸ ︷︷ ︸

l(r|x;θt)

−1

2

n∑
t=1

[
log 2π + log

(
θ2u
)

+
u2t
θ2u

]
︸ ︷︷ ︸

=l(x;θt)

, (14)

where

ut = log xt − ε− φ log ht − τ1zt − τ2(z2t − 1)

and

A(ν) = log(Γ(
ν

2
))− log(Γ(

ν + 1

2
)).

The parameter vector to be estimated is θ = (ω′, γ, β, d, δ, ν, ε, φ, τ1, τ2, σ
2
u, a
′, b′).

We maximize equation (14) with the help to statistical packages in R software to
estimate the vector θ.
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Table 2. Simulation results for estimation of A-Realized HYGARCH models without
structural change.

A-Realized HYGARCH (1,d,1,k)
d Bias RMSE SE

k=1
0.25 0.0816 0.1184 0.0858
0.35 0.0239 0.0795 0.0758
0.45 0.0082 0.0793 0.0789

k=2
0.25 0.0563 0.0989 0.0813
0.35 0.0090 0.0811 0.0806
0.45 0.0059 0.0904 0.0903

k=3
0.25 0.0302 0.0877 0.0823
0.35 0.0028 0.0914 0.0914
0.45 -0.0276 0.1029 0.0992

k=4
0.25 0.0390 0.0787 0.0684
0.35 -0.0132 0.0769 0.0758
0.45 -0.0411 0.1026 0.0940

Table 3. Simulation results for estimation of A-Realized HYGARCH(1, d, 1, k) models
with various structural change designs

A-Realized
HY-
GARCH (1,0.25,1,k)

A-Realized
HY-
GARCH (1,0.35,1,k)

A-Realized
HY-
GARCH (1,0.45,1,k)

BIAS RMSE SE BIAS RMSE SE BIAS RMSE SE
k=0 m2 0.0886 0.0959 0.0366 0.0105 0.0336 0.0319 -0.058 0.0684 0.0362

m3 0.2353 0.2466 0.0737 0.1474 0.1590 0.0596 0.1127 0.1291 0.0630
k=1 m2 0.1134 0.1203 0.0402 0.0320 0.0487 0.0367 0.0329 0.0452 0.0419

m3 0.1245 0.1366 0.0562 0.0753 0.0890 0.0474 0.0340 0.0605 0.0500
k=2 m2 0.1244 0.1358 0.0544 0.0307 0.0568 0.0478 -0.046 0.0643 0.0443

m3 0.0895 0.1047 0.0542 0.0494 0.0719 0.0522 0.0108 0.0539 0.0528
k=3 m2 0.1481 0.1613 0.0640 0.0666 0.0954 0.0682 -0.03 0.0647 0.0569

m3 0.0566 0.0801 0.0567 0.0190 0.0671 0.0644 0.0011 0.0750 0.0750
k=4 m2 0.1416 0.1559 0.0653 0.0703 0.1053 0.0784 -0.035 0.0599 0.0023

m3 0.0529 0.0835 0.0646 -0.004 0.0731 0.0730 -0.019 0.0882 0.0860

Note 1: The Table 1 reports simulation results for the bias, root mean square error
(RMSE) and standard error (SE) for estimation of the fractional differencing param-
eter d from simulations with sample size T = 3000. All the results are based on 500
replications.
Note 2: As for Table 1, the Table 2 compute the estimated models used in
Gallant (1984) ’s kth order flexible functional form, with k = 1, 2, 3, 4, for the adaptive
component.
Note 3: The Table 3 reports simulation results for the bias, root mean square error
(RMSE) and the standard error (SE) for estimation of the fractional differencing
parameter d from a sample size of T = 3000 observations. All the results are based
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on 500 replications. The simulations are for two different experiments of: a single
break point (m2) and two break points (m3).

Table 1 summarizes estimation results of the A-Realized HYGARCH models with
k = 0 equivalent to the ordinary A-Realized HYGARCH models for the Realized
HYGARCH DGP with Design 1. We remark that the estimated long memory
parameter d has a very small bias. This result is consistent with the three values
assumed for d. The Realized HYGARCH(1, d, 1) DGP with d = 0.45 has the lowest
estimation bias.

Table 2 summarizes estimation results for an A-Realized HYGARCH models with
k = (1, 2, 3, 4). There is an important result obtained by comparing Table 1 and
Table 2. More than half of the model shows a reduction in bias after adopting an
adaptive structure. As d increases, the reduction in the degree of bias tends to
increase. The estimated long memory parameter, obtained from the A-Realized
HYGARCH and the Realized HYGARCH model estimation, has, in both, approx-
imately the same degree of small sample RMSE. This result suggests that the
intercept used (which follows a flexible function form with more than one pair of
trigonometric components) can adjust for some uncertainties in the estimation of
the long memory parameter d (see Richard and Morana (2009)).

Table 3 reports estimation results for estimates of A-Realized HYGARCH(1, d, 1, k)
models. From Table 3, it can be seen that most A-Realized HYGARCH(1, d, 1, k)
models appear to have smaller estimation bias for the m3 structural change design
than the m2 design. For the two cases, from the high persistence case (d = 0.45),
the degree of bias in the estimates of d is very small for both estimators.

However, the bias is always smaller using the A-Realized HYGARCH model than
the pure Realized HYGARCH model. Furthermore, the RMSE of the estimated of
d is generally lower from the A-Realized HYGARCH estimation compared to the
pure Realized HYGARCH one. Finally, we can say that the A-Realized HYGARCH
model performs, generally, better than the standard Realized HYGARCH model in
the sense of RMSE and SE criteria. Indeed, the former is robust across the three
values used in the designs contrary to the latter. Furthermore, the improvement
increases as the degree of persistence increases.

In general, the A-Realized HYGARCH model consistently outperforms the Re-
alized HYGARCH model across different simulation designs with and without
structural change. This fact suggests the usefulness of the A-Realized HYGARCH
model in practice. The findings of this research are consistent with those from
Richard and Morana (2009).
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5. Conclusion and future works

In this article, we have developed the adaptive Realized HYGARCH process. It is
much more flexible in modeling long-memory behavior and structural change
often encountered in financial data. Under some assumptions, the model is shown
to be stable. The quasi-maximum likelihood procedure is used to estimate the
parameter of this model. Finite sample behaviors of this method were studied
using Monte Carlo simulations. It indicates that the A-Realized HYGARCH model
outperforms the Realized HYGARCH model with and without structural change.

Since the results and the estimation methodology are encouraging, it will be inter-
esting to examine the Adaptive Realized HYGARCH model’s empirical application
in financial data.
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