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Résumé. (Abstract in French) Dans ce papier, nous proposons la fonction de
densité de puissance log-exponentielle comme distribution comme fonction de
base pour le modèle du temps défaillance accéléré AFT en Analyse des données
de survie avec des covariables. Ce modèle généralise la famille log-normale et une
famille exponentielle en raison de la flexibilité de la queue de la distribution. Ce
modèle a une propriété de concavité logarithmique, s’adapte aux quatre formes
de base de la fonction de danger, ce qui est une propriété attrayante par rapport
aux autres distributions qui n’ont pas. La qualité de l’ajustement du modèle par
rapport à certains modèles existants a été testée à l’aide de données provenant de
patients atteints d’une maladie hépatique chronique suivis à l’hôpital universitaire
Obafemi Awolowo, Ile-Ife.
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1. Introduction

The Accelerated Failure Time model (AFT ), which is a parametric survival
regression model in which the effects of covariates on the response variable
(the logarithm of survival times) is to accelerate or decelerate survival time
has received substantial attention in recent times. This is attributable to the
straight-forward method of estimation based on the maximum likelihood esti-
mate as against the partial likelihood as in semi-parametric ones Lawless (2005).
Khan and Khosa (2016) affirmed that parametric survival models give rise to more
efficient parameter estimates than the semi-parametric ones. The AFT model also
serves as an alternative approach in modeling survival times when assumptions
of the commonly used Proportional Hazard model flops Wei (1992).

Several AFT models exist such as the generalized gamma AFT
model as in Cox et al. (2007) and the inverse gaussian AFT model
Lemeshko et al. (2010). For further discussion on parametric survival mod-
els, see Kalbfleisch and Prentice (2002), Collett (2003), Hashimoto et al. (2016),
Rezaei et al. (2014), Pescim et al. (2013), Reed (2011), Mahmoud et al. (2015) and
Ortega et al. (2012). Dey et al. (2019) proposed alpha-power transformed Lomax
(APTL ) distribution which generalized the existing Lomax distribution to provide
better fits in modeling survival and lifetime time data.

In a review on AFT models, Saikia and Barman (2017) suggested that since
gamma, weibull, log-logistic, lognormal and exponential distributions have been
widely used as AFT models, other distributions such as skew normal, generalized
exponential, and the likes should be explored. Hence, the choice of baseline
distribution in AFT model is vital in that each distribution has its hazard func-
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tion which could take on a variety of shapes. That is why Maxim (2008) and
Tableman and Kim (2004) remarked that although different distributions do have
same basic shape of survival function (which is monotone decreasing), their
hazard functions could change dramatically and therefore proves to be much more
informative and a better way to depict mechanism of failure than the survival
function.

It is on this basis that we developed and studied log-exponential power distribution
which was derived from the transformation of exponential power distribution. The
new model has flexible tails and log-concavity properties and equally accommo-
dates the four basic shapes of hazard function: monotone increasing, monotone
decreasing, increasing and then decreasing, decreasing and then increasing
all these in a single model we proposed. These properties are attractive when
compared with other distributions that cannot provide all these four different
shapes for hazard function.

Some univariate and multivariate extensions of the exponential power distribu-
tion has been studied by Subbotin (1923), Olosunde (2013), Nadarajah (2005),
Wenhao (2013), Kanichukattu and Paul (2018) and Hutson (2019). Finally, we
applied the log-exponential power distribution as baseline distribution in acceler-
ated failure time model in the analysis of chronic liver disease data.

2. Log-Exponential Power Distribution

Definition 2.1: Suppose a random variable X follow the univariate exponential
power distribution defined as

fX(x) =
1

Γ(1 + 1
2β )21+

1
2β

exp

{
− 1

2

∣∣∣∣x− µσ
∣∣∣∣2β}, x, µ ∈ R; σ, β > 0, (1)

where β is the shape parameter, µ and σ represent the location and scale parame-
ters respectively, without loss of generality let µ = 0, σ = 1 then we have the stan-
dardized exponential power density function given as

fX(x) =
1

Γ(1 + 1
2β )21+

1
2β

exp{−1

2
|x|2β}, x ∈ R, β > 0

where β is the shape parameter. See Hutson (2019) for further reviews on expo-
nential power distribution.

We derived the log-exponential power distribution through transformation of the
univariate exponential power distribution. Hence, a random variable T is said to
have log-exponential power distribution which satisfies all necessary and sufficient
conditions if
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fT (t) =
1

tσΓ(1 + 1
2β )21+

1
2β

exp

{
− 1

2

(
ln t

σ

)2β}
, t > 0, σ > 0, β > 0,

where σ and β represents the scale and shape parameters respectively.

Equation (1) will henceforth be referred to as the Log-Exponential Power distri-
bution (LEP ). We denote this distribution as T ∼ LEP(σ, β). We note that if β=1,
Equation (1) reduces to the log-normal distribution. For higher values of β, such
as β=2, β=3, . . . we observe the high kurtosis which shows the ability of the
distribution to capture inherent dynamic data. Figure 1 (top left) shows the plot of
the density function for various values of β.

The plots of the probability density function, cumulative distribution function, sur-
vival and hazard functions were given in Figure 1. The probability density plot re-
veals flexibility in its tails for each increase in value of the shape parameter as well
as increase at the peaks. This shows the distribution’s ability to capture inherent
dynamic data. More so, the plots of its hazard function shows that for various val-
ues of the shape parameter, the four basic shapes of hazard function were exhibited
namely monotone increasing, decreasing, unimodal and bathtub shapes.

Proposition 1. Let T be a random variable having log-exponential power distribu-
tion given in equation (3). Then the cumulative distribution function is

F (t) =

γ

(
1
2β ,

1
2 ( ln t

σ )2β
)

Γ( 1
2β )

. (2)

Proof: See Appendix.

Figure 1 (top right) shows the various shape of the cdf with different β. In what
follows, we present a corollary to Proposition 1 to derive the survival and hazard
functions.

Corollary 1. Let T be a random variable having (1) as probability density function
and cumulative distribution function in equation 2, then the survival and hazard
functions are respectively

S(t) =

Γ( 1
2β )− γ

(
1
2β ,

1
2 ( ln t

σ )2β
)

Γ( 1
2β )

(3)

and

h(t) =
21−

1
2β exp(− 1

2 ( ln t
σ )2β)

σt
β

[
Γ( 1

2β )− γ
(

1
2β ,

1
2 ( ln t

σ )2β
)] . (4)
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Fig. 1. Log-exponential power plot of functions

The plot of survival(down left) and hazard functions (down right) are presented
in above Figure 1. The next proposition is to establish the log-concavity of the
pdf (1). Bagnoli and Bergstrom (2005) studied the properties and importance of
log-concavity of some probability density function. Olosunde (2020) presented
properties and applications of log concave exponential power distribution which
is the baseline pdf of (1) in the present study. Generally, a function is said to
be log-concave if twice-differentiable real-valued function, k whose domain is
an interval on the extended real line is a function that satisfies the condition
(ln k(.))′′ < 0. Now, for the case of log-exponential power distribution (1) we have
the following:

Definition 2.2: The random variable X is said to have increasing (decreasing)
hazard rate (failure rate) if h(x) is a decreasing (increasing) function of x.
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The following theorem connect the log-concavity of the reliability function and the
monotonicity of the hazard components.

Theorem 1. Ma (2000) Let X be an absolutely continuous random vector with joint
reliability function F̄(x) = P(X1 > x1, ..., Xn > xn). If F̄(x) is log-concave, then the
random vector X has increasing failure (hazard rate).

Proposition 2. Suppose T is random variable with pdf (1), then (1), (2), (3) and (4)
are log-concave or log-convex functions depending on the value of β and for t = 1 it
is log-convex.

Proof. It is sufficient to prove that (3) is log-concave, consequently the result can
be extended to other derivations of (3) namely (4) to (6). The Log-exponential power
distribution with probability density function, f(t) is said to be log-concave, if
(ln f(t))′′ < 0 Bagnoli and Bergstrom (2005). From density 3 we could deduce that

(ln f(t))′′ =
d

dt

[
− 1

t
− β

t
(ln t)2β−1

]
=

1

t2
− β

t2
(2β − 1)(ln t)2β−2 +

β

t2
(ln t)2β−1

=
1

t2
− β

t2
(ln t)2β−2(2β − 1− ln t), , t > 0 . (5)

Remark 1. From 5 the log-concavity or log-convexity depends on the values of the
shape parameter β except at the point t = 1, where it is log-convex. For β = 1

2 ,
(ln f(t))′′ > 0 which is log-convexity and for β = 1, it is mixed, i.e. mixture of log-
concavity and log-convexity. This results are useful in establishing the (increasing
or decreasing) monotonicity of hazard functions of LEP.

Corollary 2. The density function (1), survival function (3) and hazard function (4)
have monotonically:

i. decreasing failure rate for t 6= 1 and β = 1
2 ;

ii. increasing failure rate for t 6= 1 and β > 1; and
iii. decreasing failure rate for t = 1 for all values of β.

Proof: The results are immediate from (5) and bringing the definitions and
the theorem into consideration. These results generalized the cases of exponen-
tial, log normal and Weibull distributions etc. commonly used in reliability studies.

3. Some Inferential Aspects

3.1. Moments of Log-exponential power distribution

The rth moment of a continuous random variable, T , which follows the log-
exponential power distribution is given by,
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Table 1. Moments of simulated sample from Log-exponential power distribution

β expectation variance skewness kurtosis
2 1.2609 0.7718 1.0147 4.7926
3 1.2145 0.5774 0.9659 3.2674
4 1.1986 0.5145 0.1147 2.8428
5 1.1911 0.4873 0.7903 2.6572
6 1.1869 0.4723 0.6358 2.5544
7 1.1843 0.4630 0.7421 2.4929
8 1.1825 0.4570 0.7259 2.4525
9 1.1813 0.4530 0.7154 2.4170
10 1.1803 0.4495 0.7088 2.4020

E(T r) =

∫ ∞
0

tr
1

t σ Γ(1 + 1
2β ) 21+

1
2β

exp

{
− 1

2

(
ln t

σ

)2β}
dt

=
1

σ Γ(1 + 1
2β ) 21+

1
2β

∫ ∞
0

tr−1 exp

{
− 1

2

(
ln t

σ

)2β}
dt

When β is 1, the log-exponential power distribution reduces to the lognormal
distribution, same applies to the moments. The moments for higher values of β
are given below.

Table 1 below gives the numerical results of the expectation, variance, skewness
and kurtosis of simulated sample from log-exponential power distribution for β =
2, · · · , 10.

3.2. Maximum Likelihood Estimate of Parameters of Log-exponential power
Distribution

Given a random sample of n observations t1, t2, · · · , tn from log-exponential power
distribution, the likelihood function is given as:

L(ti;σ, β) =

n∏
i=1

f(ti;σ, β).

The log-likelihood function is given as

`(ti;σ, β) = n ln

n∑
i=1

(
1

tiσΓ(1 + 1
2β )21+

1
2β

)
− 1

2

n∑
i=1

(
ln ti
σ

)2β

= −
n∑
i=1

ln ti − n lnσ − n ln Γ(1 +
1

2β
)− n

(
1 +

1

2β

)
ln 2− 1

2

n∑
i=1

(
ln ti
σ

)2β

. (6)
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Differentiating (6) with respect to each of the parameters, we have

∂`(ti;σ, β)

∂σ
=
−n
σ

+
β
∑n
i=1(ln ti)

2β

σ2β+1
;

σ̂ =

(
β
∑n
i=1(ln ti)

2β

n

) 1
2β

;

∂`(ti;σ, β)

∂β
=

nψ

(
1 + 1

2β

)
2β2

+
n ln 2

2β2
−

n∑
i=1

(
ln ti
σ

)2β

ln

(
ln ti
σ

)
, (7)

where

ψ

(
1 +

1

2β

)
=

d ln

(
Γ(1 + 1

2β )

)
dβ

.

An explicit solution is not easily obtained for (7). We therefore adopt numerical
approach and substitute for σ in the resulting equation to obtain estimated value
for β̂, codes were written in R environment to achieve this.

3.3. Fisher information

The fisher information matrix for a random variable T , that follows LEP and its
parameters space, P = (σ, β) , the observed fisher information matrix is given by

I(P ) =
[
Lσσ Lβσ
Lσβ Lββ

]
where, the elements of I(P ) are

Lσσ =
∂2`

∂σ2
=

n

σ2
−
β
∑n
i=1(ln ti)

2β(2β + 1)

σ2β+2
,

Lβσ =
∂2`

∂β∂σ
=

∑n
i=1( ln ti

σ )2β

σ
+

2β
∑n
i=1( ln ti

σ )2β ln( ln ti
σ )

σ
,

and

Lββ =
∂2`

∂β2
= −

nψ′(1 + 1
2β )

β3
− n ln 2

β3
− 2

n∑
i=1

(
ln ti
σ

)2β(
ln

(
ln ti
σ

))2

..
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4. Log-Exponential Power for Accelerated Failure Time Model (AFT )

To derive the log-exponential power AFT model, the log-exponential power density
function (1) as well as its survival function (3) will be of great use. The two functions
will be used as baseline distribution by substituting them in the likelihood function
meant for estimating parameters of Accelerated Failure Time model. This likelihood
function is peculiar to the type of data censoring involved. In this present work a
case of right censored data will be considered. The likelihood function for any AFT
model whose data is right censored is given as

L =

n∏
i=1

[f(ti | ci)]δi [S(ti | ci)]1−δi , (8)

where f(ti | ci) and S(ti | ci) are the density function and survival function of the
AFT model respectively; ti represents the survival time; ci is (c1, · · · , cp), a vec-
tor of covariates under study; and ωi is (ω1, ..., ωp), a vector of regression coefficient.

The AFT model in terms of survival function is given as

S(t | c) = S0(exp{c′ω}t), (9)
where S0(.) is the baseline survival function.

Likewise, in terms of hazard function, AFT model is given as

h(t | c) = exp{c′ω} h0(exp{c′ω}t),
where h0(.) is the baseline hazard function.

Then, the density function of AFT model is given by

f(t | c) = h(t | c) S(t | c)
= exp{c′ω} h0(exp{c′ω}t) S0(exp{c′ω}t)
= exp{c′ω} f0(exp{c′ω}t), (10)

where f0(.) is the baseline density function. δi is the censoring indicator defined as

δi =

{
1 if the ith individual has the event of interest

0 if the ith individual is censored (alive or discharged)

4.1. Estimate of parameters of log-exponential power AFT model

Substituting Equations (9) and (10) in Equation (8), the likelihood function of Log-
exponential power AFT model is given as

L =

n∏
i=1

[
exp{c′iω}

1

exp{c′iω}ti σ Γ(1 + 1
2β ) 21+

1
2β

exp

{
− 1

2

(
ln(exp{c′iω}ti)

σ

)2β}]δi
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×
[
1− 1

Γ( 1
2β )

γ

(
1

2β
,

1

2

(
ln(exp{c′iω}ti)

σ

)2β)]1−δi
.

The log-likelihood function of LEP AFT model is given as

`(ti, δi, ci, σ, β, ω) = δ ln τ − Z(.)−
n∑
i=1

δi ln ti + (1− δi) ln(1−K(.)),

where δ =
∑n
i=1 δi and τ = (σΓ(1 + 1

2β )21+
1
2β )−1.

Z(ti, δi, ci, σ, β, ω) =
1

2

n∑
i=1

(
c′ω + ln ti

σ

)2β

,

and

K(ti, δi, ci, σ, β, ω) =

(
1− 1

Γ( 1
2β )

γ

(
1

2β
,

1

2

ln(exp{c′iω}ti)
σ

2β))
.

Differentiating equation (24) with respect to each of the parameters and solving
simultaneously, we obtain estimators of σ, β, and ω using numerical approach,
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, with codes written in R
environment.

5. Application to data on chronic liver disease

The aforementioned methods were applied to data on chronic liver disease. Chronic
liver disease is a disease in which the liver damages little by little from one stage
to another starting with the liver tissue inflammation (known as Hepatitis) to liver
fibrosis (which is the very first stage of liver scarring), then cirrhosis (a condition
in which the usual healthy liver tissue is replaced by scar tissue) and finally to
Hepatocellular Carcinoma (most commonly occurring primary liver cancer). Liver
disease could be hereditary or caused by factors such as alcohol abuse, virus
causing hepatitis A,B,C and so on.

Although the liver has the ability to heal itself (referred to as regeneration),
continuous scarring which leads to cirrhosis impedes the liver’s ability to com-
pletely heal. However, positive adjustments in lifestyle as well as medications can
decelerate fibrosis build up.

Kim et al. (2015) stated that for most chronic diseases, age is a major risk factor.
They also stated that longer interventions are needed in treatment of older patients
who have liver disease. Furthermore, Guy and Peters (2013) asserted that men
are twice more probable to die from chronic liver disease than women.
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On this basis, two covariates namely age and sex were considered in this study.
The data on chronic liver disease patients was obtained from Obafemi Awolowo
University Teaching Hospital Complex, Ile-Ife, Osun State, Nigeria. It contains
information on 45 patients which comprises 37 males and 8 females monitored at
the facility and it is right censored. The survival times (measured in days) starts
from date of admission to death. Those who were discharged are censored. Status
denotes the censoring indicator such that those who died were coded as ’1’ and
those who were discharged were coded ’0’. Also, two covariates namely age (in
years) and sex (males coded as ’1’ and females ’0’were considered for each patient.

Codes are written in R environment with supplementary packages normalp,
fitdistrplus and survival were used in estimating parameters of the distribution.
They are all available in R software.

Table 2 shows summary of the dataset. It was observed that the minimum survival
time is 1 day, the mean survival time is 15 days, median survival time is 12 days
and the maximum survival time is 93 days.

Also, patients who experienced the event of interest are 11 males and just 1 female
while the remaining 33 patients were censored. The minimum age is 28 years,
maximum age is 80 years and mean age is 48 years.

Table 3 shows the comparison of log-exponential power distribution with some
existing models when only the survival times of chronic liver disease patients
were modeled. The comparison was made using the values for AIC and BIC
respectively. Using this data, the maximum Likelihood estimate of parameters of
log-exponential power distribution are σ = 2.186 and β = 1.119. The model with
the least AIC and BIC values is considered as the model that best fits the data.
From the result, the Log-exponential power distribution has the least AIC and
BIC values compared to the log-logistic, lognormal, weibull and inverse weibull
distribution. Table (4) shows the comparison of log-exponential power distribution
with some existing models when covariates were incorporated into the survival
model in analysis of chronic liver disease data. We observed that the LEP AFT
model has the largest AIC and BIC values compared to the log-logistic, lognormal
and weibull distributions.

The coefficients estimates of the covariates for all of the considered models were
presented in Table 4. exp(−0.03) = 0.9704 implies that age decelerates survival
time by 97%.

For sex effect (male = 1, female = 0), exp(0.59) = 1.7968 implies that sex accelerates
survival time by approximately 80%. That is, males have longer survival time than
females.
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Table 2. Summary of data on chronic liver disease patients who reported at the
facility

Total number of patients 45
Number of males 37

Number of females 8
Number of deaths recorded 12

Number censored 33
minimum survival time 1 day
maximum survival time 93 days

mean survival time 15 days
median survival time 12 days

minimum age 28 years
maximum age 80 years

mean age 48 years

Table 3. Comparison of log-exponential power distribution with some existing mod-
els when only the survival times of chronic liver disease patients were modeled

Distribution log-likelihood AIC BIC
log-exponential power -68.913 141.827 144.439

log-logistic -167.167 338.333 341.946
lognormal -167.290 338.580 342.194
weibull -165.587 335.175 338.788

Table 4. Comparison of log-exponential power distribution with some existing mod-
els when covariates were incorporated into the survival model in analysis of chronic
liver disease data

Distribution covariates log-likelihood AIC BIC
age sex

log-exponential power -0.03(0.011) 0.586(0.426) -64.838 137.675 144.902
lognormal -0.047(0.025) -0.528(1.263) -57.244 122.489 129.716
log-logistic -0.041(0.026) -0.386(1.262) -57.795 123.589 130.876

weibull -0.036(0.026) -0.335(1.399) -58.269 124.539 131.767

6. Conclusion

This study introduced a new parametric model for the analysis of survival data
called the Log-exponential power distribution which is flexible in tails, generalizes
the existing Log-normal distribution and some other distributions and most
importantly, it accommodated four basic properties of hazard function namely;
monotone increasing, monotone decreasing, increasing and then decreasing,
decreasing and then increasing. These properties are attractive comparing with
other distribution that cannot provide all these four different shapes for hazard
function. It fits the observed chronic liver disease patients data better when
only survival times were modeled compared with the log-normal, log-logistic,
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weibull and inverse weibull distributions. We therefore strongly advocate its use
as alternative flexible parametric model in survival analysis.
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Appendix

Proof of Proposition 1. We have

F (t) =

∫ t

0

1

xσΓ(1 + 1
2β )21+

1
2β

exp

{
− 1

2

(
lnx

σ

)2β}
dx

=
1

σΓ(1 + 1
2β )21+

1
2β

∫ t

0

1

x
exp

{
− 1

2

(
lnx

σ

)2β}
dx. (11)

Let

w =
1

2

(
ln x

σ

)2β

, i.e., (2w)
1
2β =

lnx

σ
.

Then

x = exp {σ(2w)
1
2β }. (12)

Differentiating Equation (12) with respect to w leads to

dx

dw
= exp {σ(2w)

1
2β } × σ

β
(2w)

1
2β−1. (13)

Bu substituting Equations (12) and (13) into Equation (11), we have

1

Γ( 1
2β )

∫ t

0

exp{−w} w
1
2β−1dw.

Therefore,

F (t) =

γ

(
1
2β ,

1
2 ( ln t

σ )2β
)

Γ( 1
2β )

,

where γ (.) is the lower incomplete gamma function defined as

γ(a, t) =

∫ t

0

wa−1exp(−w)dw.
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