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Abstract. In this paper, we consider the Markov regime-switching GJR-
GARCH(1,1) model to capture both the cumulative impulse response and the asym-
metry of the dynamic behavior of financial market volatility in stationary and
explosive states. The model can capture regime shifts in volatility between two
regimes as well as the asymmetric response to negative and positive shocks. A
Monte Carlo simulation is conducted to validate the main theory and find that
the regime-switching GJR-GARCH model performs better than the standard GJR-
GARCH model. Applications to Brazilian stock market data show that the proposed
model performs well in terms of cumulative impulse response.

Résumé. Dans cet article, nous examinons le modèle GJR-GARCH(1,1) à change-
ment de régime de Markov pour capturer à la fois la réponse impulsionnelle cu-
mulative et l’asymétrie du comportement dynamique de la volatilité des marchés
financiers dans les états stationnaires et explosifs. Le modèle peut capturer les
changements de régime de la volatilité entre deux régimes ainsi que la réponse
asymétrique aux chocs négatifs et positifs. Une simulation de Monte Carlo est
menée pour valider la théorie principale et trouver que le modèle GJR-GARCH à
changement de régime est plus performant que le modèle GJR-GARCH standard.
Les applications aux données du marché boursier brésilien montrent que le modèle
proposé est performant en termes de réponse impulsionnelle cumulative.
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1. Introduction

Volatility in financial markets has been the subject of many developments
and applications over the past four decades. Volatility in financial time series
data has characteristics such as volatility concentration, time variation, heavy-
tailed distribution, and leverage. Financial returns are well known to have a
non-normal distribution that tends to have a fat-tailed. Leptokurtic and volatil-
ity clustering (Brooks (2002)) are commonly observed in financial time series
(Mandelbrot (1963)). The normal distribution for asset return data was strongly
rejected by Mandelbrot (1963), conjecturing that financial return processes behave
as stable non-Gaussian processes. Another phenomenon most often encountered
is the leverage effect. Changes in stock returns generally tend to be negatively
correlated with changes in the volatility of returns. Black (1976) was the first
to note that volatility tends to increase in response to ”bad news” and decrease
in response to ”good news”. This phenomenon is called, ”leverage” and can only
be partially interpreted by fixed costs such as financial and operational leverage
(Black (1976) and Christie (1982)). The asymmetry in the volatility of stock re-
turns is not fully explained by leverage, but also by the property of ”long memory”
(Harris and Sollis (2003)) and time-varying volatility or ”heteroscedasticity” of the
data. Long memory implies that current information has a persistent impact on
future accounts. Heteroscedasticity refers to variable volatility.

Leverage is not easily detected in stock market index and a company’s leverage ratio
increases when its stock price decreases. If the company’s cash flow is constant, it
will increase the volatility of the stock return. In this case, we can expect negative
returns today to lead to greater volatility tomorrow, and vice versa for positive
returns. This behavior cannot be captured by standard GARCH(1,1) models.
Symmetric GARCH class VaR models have difficulties in correctly modeling the
tails of the return distribution (Giot and Laurent (2003)) due to leverage effects.
The use of asymmetric conditional models that contain a skewness parameter in
the conditional variance equation and the use of asymmetric density functions for
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the error terms allows for leverage in the volatility forecast. While these approaches
offer an improvement in fit over symmetric models, empirical evidence suggests
that the persistence of the conditional variance is likely to be significantly biased
upward.

A Markov regime-switching (MS) approach solves this problem by endogenizing
changes in the data generation process. Many authors have attempted to combine
the Markov chain with the GARCH models to simulate the dynamic properties of
financial market data and to obtain better performance in predicting volatility.
Hamilton and Samuel (1994) and Cai (1994) propose an ARCH model with speed
switching parameters. Gray (1996) proposes a class of GARCH models (RS-
GARCH) with regime change with a variable probability over time, but estimates
an approximation to the model. For many details, see also Bollen et al. (2000),
Klaassen (2002) and Haas et al. (2004). Gray (1996) presents a tractable Markov-
switched GARCH model and Klaassen (2002) modifies his model to improve the
GRS-GARCH model by allowing greater flexibility in capturing the persistence of
volatility shocks and by providing a recursive form of multi-stage volatility fore-
casts. Haas et al. (2004) proposed a new traceable approach to Markov-switched
GARCH models to overcome serious estimation difficulties and understand the
dynamic properties of non-linearity, and Marcucci (2005) compared a set of differ-
ent standard GARCH models with a group of Markov-switched GARCH models.

To measure the persistence of volatility, Baillie et al. (1996) introduced the cu-
mulative impulse response into volatility and the fractional integration GARCH
process and discussed its limitations in stationary or explosive GARCH processes.
Conrad and Kranasos (2006) also obtained practical representations of the im-
pulse response function of long memory GARCH processes. Park et al. (2010)
also examined a general form of the cumulative impulse response function of
asymmetric GARCH processes at the threshold.

Since volatility in GARCH does not differentiate between positive and negative past
values, as long as they are of the same magnitude, the GARCH class fails to cap-
ture asymmetric volatility. Consequently, there is a growing interest in asymmetric
GARCH modeling in response to empirical evidence of asymmetric volatility result-
ing mainly from financial time series. See Rabemananjara and Zakoian (1993),
Hwang and Basawa (2004), Pan et al. (2008) and Park et al. (2009) with their
references.

Based on the previous literature, we then introduce an asymmetric regime
switching model. This paper studies Glosten (1993) GJR-GARCH with two-state
Markov change regimes and examines its cumulative impulse response function,
which measures the long-term effect of current shocks on future volatility. We
apply the Markov regime change over two consecutive discrete times t − 1 and t,
which represent the time intervals [t − 1, t] and [t, t + 1] respectively, and we use
continuous functions of the parameters in these two consecutive intervals. It is
assumed that the GJR-GARCH model has two states: the stationary state and
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the explosive state, so that the persistence parameter of the GJR-GARCH model
has a value less than 1 and a value above 1 respectively. It is also assumed that
the current state remains constant in a unit of time and that at the next instant
the state can move with the probability of transition from the Markov chain to
parameters that are always changing over time. A Monte Carlo study is conducted
to see the time series plots of the GRS-GJR-GARCH along with the volatility, the
conditional probability of Markov-chain state given the past information, and the
behavior of the cumulative impulse response functions. This work extends the
result of Kim and Hwang (2018) to the Markov regime-switching GJR-GARCH
model with time-varying switching probabilities, in order to take into account
asymmetry and persistence in the dynamic of the volatility. A real data application
is given to compare the GJR-GARCH and the GRS-GJR-GARCH’s cumulative
impulse response functions for the Brazilian stock market IBOVESPA due to the
world health crisis.

The remainder of the paper is organized as follows. Section 2 describes the Markov
regime-switching GJR-GARCH model, presents assumptions, and the main result.
In Section 3, a Monte Carlo Study is conducted to verify the dynamics of volatility
and the empirical study in section 4. Proof is given after the conclusion in section
5.

2. Model and main results

2.1. Generalized regime-switching GJR-GARCH(1,1) process

In order to describe two-state Markov regime-switching GJR-GARCH model, we
start with a GJR-GARCH model given in (1) below:

{
yt = ξt

√
ht ; t = 1, 2, . . .

ht = ω + (α+ γI(yt−1<0))y
2
t−1 + βht−1; ω > 0, α, γ, β ≥ 0

(1)

with the indicator function

I(yt−1<0) =

{
1 if yt−1 < 0,
0 if yt−1 ≥ 0,

where the conditional variance ht = h(θh,Ψt−1), with θh = (ω, α, γ, β) being vector of
parameters and Ψt−1 being the entire past history of the data up to time t− 1, and
ξt is a stationary sequence of random variables with mean zero and variance one.

If γ > 0 then a leverage effect exists, that is negative news has a bigger impact on
volatility than positive news. If γ 6= 0, the news impact is asymmetric. The leverage
effect is often described as a falling equity price which leads to an increase in a
firm’s debt to equity ratio which increases the volatility of returns to equity holders.
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Now we introduce a GRS (Generalized Regime Switching) of Gray (1996) to the
GJR–GARCH(1,1) model, proposed by Glosten (1993) and consider the GRS-GJR-
GARCH(1,1) model in this work. To propose the GRS-GJR-GARCH(1,1) process,
we adopt two-state Markov switching regimes with time-varying switching prob-
abilities for the GJR-GARCH(1,1) model, which is expressed as yt = ξt

√
ht, ht =

h[θh(St),Ψt−1] where St is unobserved regime at time t, Ψt−1 is the entire past his-
tory of the data up to time t − 1, and θh(St) = (ω(St), α(St), γ(St), β(St)), parameter
vector depending on St. As seen in Gray (1996), Ψt−1 does not contain St or lagged
values of St. We consider two-state Markov process for regimes, i.e., St ∈ {1, 2}, with
the following conditions: for i = 1, 2,

St = i⇐⇒ θh(St) = (ωi, αi, γi, βi),

with αi +
γi
2

+ βi < 1, or αi +
γi
2

+ βi > 1 if i = 1, 2, respectively. These conditions
imply stationary and explosive state, respectively. For i = 1, 2, and t ∈ Z, let
hit = h[θh(St),Ψt−1] i.e., hit = ωi + αiy

2
t−1 + γiy

2
t−1I(yt−1<0) + βiht−1.

Let p1t = Pr(St = 1|Ψt−1) and p2t = 1 − p1t = Pr(St = 2|Ψt−1). These probabilities
are determined by transition probabilities of first-order Markov process, following
Hamilton (1989), Hamilton (1990), which are assumed to be time-dependent as in
Gray (1996).

Pr(St = 1|St−1 = 1) = Pt, P r(St = 2|St−1 = 1) = 1− Pt,
P r(St = 2|St−1 = 2) = Qt, P r(St = 1|St−1 = 2) = 1−Qt.

(2)

In this work we assume that 0 < p1t < 1 for taking account of two distinct regimes.

Then we have the conditional variance:

ht = hit = V ar[yt/Ψt−1] = E[y2t /Ψt−1]

=

2∑
i=1

Pr(St = i/Ψt−1)E[y2t /Ψt−1, St = i] = p1th1t + p2th2t =: P′ht,

where Pt = (p1t, p2t)
′ and ht = (h1t, h2t)

′.

If conditional normality is assumed for each regime, then, (w.p. below stands for
’with probability’)

yt|Ψt−1 ∼
{
N(0, h1t) w.p p1t,
N(0, h2t) w.p p2t.
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We see

ht = (h1t, h2t)
′ =

[
ω1 + (α1 + γ1I(yt−1<0))y

2
t−1 + β1ht−1

ω2 + (α2 + γ2I(yt−1<0))y
2
t−1 + β2ht−1

]
=

[
ω1

ω2

]
+

[
α1 + γ1I(yt−1<0)

α2 + γ2I(yt−1<0)

]
y2t−1 +

[
β1
β2

]
ht−1

=: w + (a1 + a2I(yt−1<0))y
2
t−1 + bht−1,

where

w = (ω1, ω2)′, a1 = (α1, α2)′, a2 = (γ1, γ2)′, b = (β1, β2),

and

ht−1 = p1,t−1h1,t−1 + p2,t−1h2,t−1 = P′t−1ht−1.

We multiply by p′t to obtain

ht = P′tht = P′tw + P′t(a1 + a2I(yt−1<0))y
2
t−1 + ht−1P

′
tb (3)

= Wt +Aty
2
t−1 +Btht−1, (4)

where
Wt = P′tw = p1tω1 + (1− p1t)ω2 , Bt = P′tb = p1tβ1 + (1− p1t)β2,

At = P′t(a1 + a2I(yt−1<0)) = p1tα1 + (1− p1t)α2 + [p1tγ1 + (1− p1t)γ2]I(yt−1<0).
(5)

We adopt τ ∈ [0, 1 + τ0) for some τ0 > 0, and assume that the value τ moves
continuously in two time intervals [t − 1, t) and [t, t + 1) which represents two
consecutive times t− 1 and t, respectively, and also assume that the present state
remains without change within one unit time. For the value τ of the ”persistence
parameter” 4j := αj +

γj
2

+ βj, j = 1, 2. Specifically we express and assume as
follows: Let τ(t) be a function of time t ∈ R given by τ(.) : R → [0, 1 + τ0) for some
τ0 > 0 such that if t ∈ Z, then τ(t) = 4(St) = αj +

γj
2

+ βj if St = j for j = 1, 2 and if
s ∈ R/Z and if t < s < t+ 1 for some t ∈ Z, then |τ(t)− τ(s)| < ε for some small ε > 0.
It implies the following condition for the Markov chain.

(A1): Letting one-step transition time-dependent probabilities Qij,t := Pr(St =
j|St−1 = i), the one-step transition probability matrix Qt is given as follows:

Qt =

(
Q11,t Q12,t

Q21,t Q22,t

)
.

The probabilities pjt = Pr(St = j|Ψt−1), j = 1, 2, are determined by the one-step
transition matrix Qt. We assume the conditional normality for each regime as
follows to apply the two-state Markov chain to the GJR-GARCH model:
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(A2): Conditional normality is assumed for each regime with each probability pjt,
j = 1, 2.

yt|Ψt−1 ∼
{
N(0, h1t) with pdf f(yt|St = 1,Ψt−1) w.p p1t,
N(0, h2t) with pdf f(yt|St = 2,Ψt−1) w.p p2t,

(6)

where

f(yt|St = i,Ψt−1) =
1√

2πhit
exp

{
−y2t
2hit

}
, i = 1, 2.

Lemma 1. We assume (A1) and (A2). Under the conditional normality in (6) of (A2),
the probability pjt is obtained recursively in terms of Qij,t and pi,t−1 with some initial
probabilities pj0:

pjt =

2∑
i=1

Qij,t
gi,t−1Pi,t−1∑2
l=1 gl,t−1Pl,t−1

, j = 1, 2, (7)

where

gi,t−1 = f(yt−1|St−1 = i,Ψt−2). (8)

Lemma 2. We assume (A1) and (A2). For Wt, At, Bt in (5), the conditional variance
ht in (4) satisfies the following two expressions:

(a) ht = Wt +
∑t−1

k=1Wk

∏t−k
j=1(Bt−j+1 +At−j+1ξ

2
t−j) +

∏t−1
i=0(Bi+1 +Ai+1ξ

2
i )h0.

(b) ht =
[∏t−1

i=0(Bi+1 +Ai+1ξ
2
i )
] [
h0 +

∑t
k=1

∏k−1
j=0

Wk

(Bj+1 +Aj+1ξ2j )

]
.

2.2. Forecasting and cumulative impulse response function

In the following theorem we present the `-step ahead of forecasting of the normal
parameter ht+` of the GRS-GJR-GARCH(1,1) process, given the information Ψt at
the present time t.

Theorem 1. We suppose that:

(i) data {y1, ..., yt} are given and,

(ii) the GJR-GARCH parameters are known.

We assume (A1)–(A2).

Let ht(`) be the `-step ahead volatility for ` = 1, 2, . . ., given by ht(`) = E[ht+`|Ψt]. For
` = 1, the forecasting is given as
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ht(1) = Wt+1 +At+1y
2
t +Bt+1ht,

where Wt+1 = pt+1w, At+1 = pt+1(a1 + a2I(yt−1<0)), Bt+1 = pt+1b, with pt+1 =
(p1,t+1, p2,t+1)′, and for ` = 2, 3, . . .,

ht(`) = Ŵt+` +

`−1∑
k=1

Ŵk+`

∏̀
j=k+1

(Âj+1 + B̂j+1) +

`−1∏
j=1

(Ât+j+1 + B̂t+j+1)ht(1),

where

Ŵt+j = P̂t+jw, Ât+j = P̂t+j(a1 + a2I(yt−1<0)), B̂t+j = P̂t+jb, (9)

with P̂t+j = (P̂1,t+j , P̂2,t+j)
′,

P̂s,t+j =

2∑
i=1

Qis,t+j
ĝi,t+j−1P̂i,t+j−1∑2
l=1 ĝl,t+j−1P̂l,t+j−1

, s = 1, 2, (10)

where

ĝi,t+j = f(ỹt+j |St+j = i,Ψt+j−1) =
1√

2πh̃i,t+j

exp

{
−ỹ2t+j

2h̃i,t+j

}
, (11)

with h̃i,t+j = ωi + (αi + γiI(yt−1<0))ỹ
2
t+j−1 + βih̃t+j−1 and ỹt+j = ξt+j

√
h̃t+j for

j = 2, 3, . . . , `, and for i = 1, 2.

Remark

In this work, pjt are computed by Lemma 1 with some initial values pjt, for
which, say, pjt randomly from uniform distribution U(0, 1) can be chosen when
the data {y1, · · · , yt} were given at the present time t. To evaluate the `-step ahead
volatility ht(`) in Theorem 1, the initial probabilities P̂jt are necessary in (10), for
which the pjt obtained by Lemma 1 are used. Note that for the non-stationary
GRS-GJR-GARCH(1,1) model with a regime having explosive values in volatility,
the probabilities pjt converge to a constant related with the limit of the transition
probabilities. However, for the stationary cases, the probabilities might be dynam-
ics depending on the randomness of the process. In the recursive formulas in (7)
and (10), the probabilities should be evaluated along and are computed in the
Section of a Monte Carlo simulation as well as their dynamics in the two cases:
constant transition probabilities and time-dependent transition probabilities of
the Markov-chain regime switching.

Now we derive the representation for the cumulative impulse response function
of the GRS-GJR-GARCH(1,1) process. Impulse response function of a dynamic
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system is its output when presented with a brief input signal, called an impulse.
An impulse response refers to the reaction of the dynamic system in response to
some external change. The cumulative impulse response in volatility denoted by
λ` measures a certain contribution of innovation ηt at time t to the `-step ahead
volatility. Baillie et al. (1996) introduced Fractionally Integrated GARCH processes
and noted that cumulative impulse response in volatility denoted by λ` goes to
zero as ` → ∞ for a class of stable GARCH processes, while λ` → ∞ as ` → ∞ for
a class of explosive GARCH processes where the cumulative impulse response is
given by the partial derivative of ht(`):

λ` =
∂ht(`)

∂ηt

with η = y2t − ht = y2t −E[y2t |Ψt−1], the prediction error for the squared observations
y2t .

Considering the following sequence ηt = y2t − ht which constitutes a sequence of
zero mean martingale differences, we can express

y2t = Wt + (At +Bt)y
2
t−1 + ηt −Btηt−1.

Proof.

ηt = y2t − ht in (4), we have

y2t = Wt +Aty
2
t−1 +Btht−1 + ηt

= Wt +Aty
2
t−1 +Btht−1 +Bty

2
t−1 −Bty

2
t−1 + ηt

= Wt + (At +Bt)y
2
t−1 −Bt(y

2
t−1 − ht−1) + ηt,

then y2t = Wt + (At +Bt)y
2
t−1 + ηt −Btηt−1.

Note that y2t is an ARMA(1,1) process with time-varying coefficients, and for ` ≥ 2,

ht(`) = E[y2t+`|Ψt] = E[Wt+` + (At+` +Bt+`)y
2
t+`−1 + ηt+` −Bt+`ηt+`−1|Ψt]

= Wt+` + (At+` +Bt+`)E[y2t+`−1|Ψt] + E[ηt+`|Ψt]−Bt+`E[ηt+`−1|Ψt].

We know that ηt = y2t − E[y2t |Ψt−1] is a martingale difference sequence.

We denote that Ψt+`−1 ⊂ Ψt with ` ≥ 2,

E[ηt+`|Ψt] = E[y2t+` − E[y2t+`|Ψt+`−1]|Ψt]

= E[y2t+`|Ψt]− E[E[y2t+`|Ψt+`−1]|Ψt]

= E[y2t+`|Ψt]− E[y2t+`|Ψt]

= 0,
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and Ψt+`−2 ⊂ Ψt with ` ≥ 2,

E[ηt+`−1|Ψt] = E[y2t+`−1 − E[y2t+`−1|Ψt+`−2]|Ψt]

= E[y2t+`−1|Ψt]− E[E[y2t+`−1|Ψt+`−2]|Ψt]

= E[y2t+`−1|Ψt]− E[y2t+`−1|Ψt]

= 0.

We have then ht(`) = Wt+` + (At+` + Bt+`)ht(` − 1) and thus λ` = (At+` + Bt+`)λ`−1.
The following result presents the general solution of the linear difference equation
for λ` for ` = 1, 2, . . ., straightforwardly from Theorem 1, where the estimated
parameters are used.

Theorem 2. We assume (A1) and (A2). Then

(a) λ1 = At+1 and for ` = 2, 3, . . ., λ` =
∏`−1

j=1(Ât+j+1 + B̂t+j+1)At+1.

(b) If Ât+j + B̂t+j ≡ P̂1,t+j 41 +P̂2,t+j42 < 1 for all j but finitely many times, then
λ` → 0 as `→∞ and the GRS-GJR-GARCH process is stable in volatility.

(c) If Ât+j + B̂t+j ≡ P̂1,t+j41 +P̂2,t+j42 > 1 infinitely often in j, then λ` →∞ as `→∞
and the GRS-GJR-GARCH process is explosive in volatility.

There exist in the literature for volatilities of non-stationary GARCH models
such as Nelson (1990), Linton et al. (2010) and Li et al. (2014), we includes
also in this work much wider classes of time series models than the existing.
Hong and Hwang (2016) and Kim and Hwang (2018) established recently the
asymptotic normality of the logarithm of the volatility under the non-stationary
condition of the GRS-–GARCH models and four-state Markov regime switching
GARCH model respectively.

According to them, under condition that At + Bt ≡ p1t 41 +p2t42 > 1 infinitely of-
ten in t, which implies the non-stationary of our two-state Markov regime switch-
ing GARCH model, we have the following normality theory of the logarithm of the
volatility:
Let Xt = log(Bt+1 +At+1ξ

2
t ), mt = E[Xt], and

σ2 = lim
T→∞

V ar

[
1√
T

T∑
t=1

(Xt −mt)

]
.

Theorem 3. (Asymptotic Normality Under Non-stationary Condition).

Under some appropriate assumptions on ξt, the asymptotic normality holds as T →
∞,
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1

σ
√
T

[
log hT −

T−1∑
t=0

mt

]
d−→ N(0, 1).

3. Monte Carlo Simulation

In this section, we consider time-dependent transition probabilities of the Markov-
chain regime-switching, which determine crucially the behavior of the cumulative
impulse response functions λ`. To simulate Markov Switching’s GJR-GARCH
models, we use Chuffart (2017) MSGtool, which is a MATLAB toolbox. This box
provides a set of functions for simulating and estimating a wide variety of Markov
Switching (MSG) GARCH models. The toolbox is very flexible and user-friendly
with a large number of possible options. We choice the parameter values to
enforce conditions for the parameters so that the model becomes stationary and
nonstationary.

We first start with the time series plot of the GJR-GARCH(1,1) model. Fig. 1 (a),
(b) depicts the GJR-GARCH(1,1) process and its volatility with ω = 0.4, α = 0.2,
γ = 0.3, and β = 0.4, which is a stationary case while Fig. 1(c), (d) with ω = 0.4,
α = 0.5, γ = 0.2002, and β = 0.5, which is a non-stationary case.

Figure 2 depicts the conditional probabilities p1t and p2t = 1 − p1t of regime 1 and
regime 2, respectively, given the past information, which is given in Lemma 1, where
the parameters of GRS-GJR-GARCH(1,1) process are ω1 = 0.5, α1 = 0.1, γ1 = 0.2,
β1 = 0.7; ω2 = 0.4, α2 = 0.2, γ2 = 0.3, β2 = 0.4, that is a stationary case. Figure 2(a), (b)
use constant transition probabilities Pt = 0.6, Qt = 0.8 in (a) and Pt = 0.3, Qt = 0.4 in
(b), while Figure 2(c), (d) use time-dependent transition probabilities Pt = 0.8−0.5/t,
Qt = 0.4 + 0.1/t in (c) and Pt = 0.6 + 0.2/t, Qt = 0.9− 0.6/t in (d). We choose the initial
values of p1t randomly from uniform distribution U(0, 1) and generate values of p1t
recursively by using (7). Under the assumption of the conditional normality for each
regime, conditional probabilities pjt, j = 1, 2, of each state, which are formulated
in Lemma 1, are given in Figure 3, where the red line is the probability p1t of
state 1 and blue one p2t of state 2. As seen in Figure 2(c),(d), the probabilities vary
dynamically as time goes, even though the transition probabilities are constant.
In Figures 3 and 4, we see the time series plots of the stationary GRS-GJR-
GARCH(1,1) process and its volatility. Figure 3(a)-(d) use the constant transition
probabilities Pt and Qt as in Figure 2(a),(b), while Figure 4(a)-(d) use the time-
dependent transition probabilities as in Figure 2(c),(d). Figures 5 and 6 repeat
the same way as Figures 3 and 4, but with one of the two regimes being a non-
stationary case. Figures 3 and 4 are related to switching two stationary GJR-
GARCH(1,1) models, while Figures 5 and 6 are related to switching a stationary
GJR-GARCH(1,1) process and a non-stationary GJR-GARCH(1,1) process with the
same transition probabilities as those in Figures 3 and 4.
Finally, we observe the behavior of the cumulative impulse response functions dis-
cussed in Theorem 2.4. Figure 7(a) shows the plot of the cumulative impulse re-
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Fig. 1. GJR-GARCH(1,1) process and its volatility in stationary and non-stationary,
(a),(b) ω = 0.5, α = 0.1, γ = 0.2, β = 0.7; and (c), (d) ω = 0.4, α = 0.502, γ = 0.2, β = 0.4.

Fig. 2. Conditional probability in the GRS-GJR-GARCH(1,1) process with ω1 = 0.5,
α1 = 0.1, γ1 = 0.2, β1 = 0.7; ω2 = 0.4, α2 = 0.2, γ2 = 0.3, β2 = 0.4: (a) Pt = 0.6,
Qt = 0.8; (b) Pt = 0.3, Qt = 0.4 ; (c) Pt = 0.8− 0.5/t, Qt = 0.4 + 0.1/t; (d) Pt = 0.6 + 0.2/t,
Qt = 0.9− 0.6/t.
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Fig. 3. GRS-GJR-GARCH(1,1) process and its volatility with ω1 = 0.5, α1 = 0.1, γ1 =
0.2, β1 = 0.7; ω2 = 0.4, α2 = 0.2, γ2 = 0.3, β2 = 0.4 and with transition probabilities in
(a), (b) Pt = 0.6, Qt = 0.8 and in (c), (d) Pt = 0.3, Qt = 0.4.

sponse functions for two cases : stationary (ω = 0.5, α = 0.1, γ = 0.2, β = 0.7) and
explosive (ω = 0.3, α = 0.45, γ = 0.2, β = 0.55) cases of the GJR-GARCH(1,1) process,
while Figure 7(b) for the stationary GRS-GJR-GARCH(1,1) with the constant transi-
tion probabilities Pt = 0.6, Qt = 0.8; and Pt = 0.3, Qt = 0.4 with the GJR-GARCH(1,1)
parameters as in Figure 3 and 4. Figure 8(a) illustrate the non-stationary GJR-
GARCH(1,1), whereas Figure 8(b) the non-stationary GRS-GJR-GARCH(1,1) model
with transition probability Pt = 0.8− 0.5/t, Qt = 0.4 + 0.1/t.

4. An empirical study of IBOVESPA stock index

We, therefore, illustrate our regime-switching Markov model with time-varying
transition probabilities in an empirical study of the Brazilian stock market index
IBOVESPA. The time series for IBOVESPA is obtained from Yahoo finance; we have
daily observations adjusted for changes from January 2019 to December 2020,
T = 493. Unsurprisingly, the COVID-19 pandemic has also affected the Brazilian
economy and growth forecasts. The South American powerhouse was showing the
first signs of recovery after a severe economic crisis that hit the country in 2014.
When the World Health Organization declared the new coronavirus a pandemic
on 11 March 2020, Brazil was still a week away from declaring its first death due
to COVID-19. Nevertheless, the largest Latin American nation quickly attracted
the world’s attention, as the number of cases and deaths due to COVID-19 in
the country increased exponentially, reaching the third-highest figure in the
world, behind only the United States and India. The online site Le Figaro writes
in mid-December that Brazil has passed the threshold of seven million cases
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Fig. 4. GRS-GJR-GARCH(1,1) process and its volatility with ω1 = 0.5, α1 = 0.1, γ1 =
0.2, β1 = 0.7; ω2 = 0.4, α2 = 0.2, γ2 = 0.3, β2 = 0.4 and with transition probabilities in
(a), (b) Pt = 0.8− 0.5/t, Qt = 0.4 + 0.1/t and in (c), (d) Pt = 0.6 + 0.2/t, Qt = 0.9− 0.6/t.

and 180,000 deaths. This is confirmed by WHO statistics (see www.who.int).
Brazil’s main stock market is located in the city of São Paulo, which is also the
region of Brazil where the majority of coronavirus infections are registered. Just
after the COVID-19 pandemic reached Brazil with the first confirmed case on
February 25, 2020, the IBOVESPA stock market index fell to 102,984 Brazilian
reals on February 27. On March 23, 2020, the index has reached its lowest
value since the beginning of the year, at 63,570 Brazilian reals. In August 2020,
the stock market began to stabilize, with an average value of 95,000 Brazilian reals.

A study is being carried out on the IBOVESPA stock market index to see how cu-
mulative impulse response functions behave in the face of the shocks of the health
crisis. We examine impulse response functions that identify for each market the im-
pact of a shock on volatility and reaction time. In order to know what the amplitude
of the shock response would be and how long it would take the IBOVESPA stock
market to absorb the effect of a random shock, the study of impulse response func-
tions will allow us to provide some answers. The impulse response function traces
the effect of a unitary residual shock on the present and future values of endoge-
nous variables. The effect of the shock is transmitted in the system by the dynamics
of the model we have defined for the financial series. In this paper, we, therefore,
compare the impulse response function of the GRS-GJR-GARCH model with the
standard GJR-GARCH model using the constant and time-dependent probabilities
in Figure 9 and Figure 10 in order to show the efficiency of our model in taking
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Fig. 5. GRS-GJR-GARCH(1,1) process and its volatility with ω1 = 2, α1 = 0.2, γ1 =
0.1, β1 = 0.6; ω2 = 0.4, α2 = 0.502, γ2 = 0.1, β2 = 0.5 and with time-dependent
transition probabilities (a), (b) Pt = 0.6, Qt = 0.8 and in (c), (d) Pt = 0.3, Qt = 0.4.

Fig. 6. GRS-GJR-GARCH(1,1) process and its volatility with ω1 = 2, α1 = 0.2, γ1 =
0.1, β1 = 0.6; ω2 = 0.4, α2 = 0.502, γ2 = 0.1, β2 = 0.5 and with time-dependent
transition probabilities (a), (b) Pt = 0.8 − 0.5/t, Qt = 0.4 + 0.1/t and in (c), (d) Pt =
0.6 + 0.2/t, Qt = 0.9− 0.6/t.
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Fig. 7. Cumulative impulse response functions of (a) stationary, explosive GJR-
GARCH(1,1) and (b) non-stationary GRS-GJR-GARCH(1,1) with transition proba-
bilities Pt = 0.6, Qt = 0.8 and Pt = 0.3, Qt = 0.4.

Fig. 8. Cumulative impulse response functions of (a) non-stationary GJR-
GARCH(1,1) and (b) non-stationary GRS-GJR-GARCH(1,1) with transition prob-
abilities Pt = 0.8− 0.5/t, Qt = 0.4 + 0.1/t.

into account the asymmetry of the shocks received by the IBOVESPA stock market
index.
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Fig. 9. Cumulative impulse response functions of (a) non-stationary GJR-
GARCH(1,1) and (b) non-stationary GRS-GJR-GARCH(1,1) with transition prob-
abilities Pt = 0.6, Qt = 0.8.

Fig. 10. Cumulative impulse response functions of (a) explosive GJR-GARCH(1,1)
and (b) explosive GRS-GJR-GARCH(1,1) with transition probabilities Pt = 0.8−0.5/t,
Qt = 0.4 + 0.1/t.

Discussion

The stock market of Brazil IBOVESPA, has reacted positively to the shock of the
global health crisis of Coronavirus. This can be seen in Figure 9(b) and Figure
10(b) with our GRS-GJR-GARCH model. The amplitude of the GRS-GJR-GARCH
response to the shock is however larger than that of the GJR-GARCH and after
the shock, the effects are dissipated just from horizon 8. Concerning the impulse
response of the standard GJR-GARCH model, which has a rather similar reac-
tion behavior, the impact of the shock is less important, but the damping time
is relatively long for the GJR-GARCH which goes beyond horizon 12 to dampen
the shock (See Figure 9(a) and Figure 10(a)). Thus, we observe that the cumula-
tive impulse response function of the GRS-GJR-GARCH model with time-varying
transition probability is less persistent than that of the GRS-GJR-GARCH model
with constant probability. The GRS-GJR-GARCH model with time-varying transi-
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tion probability, therefore, better addresses the asymmetry problem generally ob-
served in the volatility of financial series.

5. Conclusion

This work proposed an asymmetric GJR-GARCH with a two-state Markov regime-
switching model with two components for the dynamics: one is stationary and
the other is explosive, using time-varying transition probabilities to capture the
volatility dynamics with different characteristics of practical financial markets
such as financial crisis and international politics. The novelty of this model
is to capture the asymmetry in the volatility dynamics and the impact on the
persistence parameter observed through the impulse response function. An
empirical study carried out on real data from the IBOVESPA stock market, shows
that the GRS-GJR-GARCH takes better into account the asymmetry and presents
a slight persistence in the volatility than the standard GJR-GARCH. We show
here the interest of using the GRS-GJR-GARCH model with time-dependent
probabilities through the cumulative impulse response function which is less
persistent and drops quickly to zero than its constant probability counterpart and
the GJR-GARCH model.

In the future, it would be interesting to see the implication of asymmet-
ric innovations such as asymmetric innovations as in Park et al. (2010) and
Hwang et al. (2010) for the Markov-chain states, and we will complete the novelty
of our model with a work on an estimation problem.

Appendix

This appendix contains the proofs of the theorems and the lemma.

A Proofs

A.1 Proof of Lemma 1

Derivation of the recursive formula of pit: we observe

p1t = Pr(St = 1|Ψt−1)

= Pr(St = 1|St−1 = 1)Pr(St−1 = 1|Ψt−1) + Pr(St = 1|St−1 = 2)Pr(St−1 = 2|Ψt−1)

= PtPr(St−1 = 1|Ψt−1) + (1−Qt)Pr(St−1 = 2|Ψt−1)

= Q11,tPr(St−1 = 0|Ψt−1) +Q21,tPr(St−1 = 1|Ψt−1).

For j = 1, 2, Pr(St−1 = j|Ψt−1) = Pr(St−1 = j|yt−1,Ψt−2)

=
f(yt−1|St−1 = j,Ψt−2)Pr(St−1 = j|Ψt−2)∑2
i=1 f(yt−1|St−1 = i,Ψt−2)Pr(St−1 = i|Ψt−2)

=
f(yt−1|St−1 = j)pj,t−1∑2
i=0 f(yt−1|St−1 = i)pi,t−1
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by Bayes Rule, where gi,t−1 = f(yt−1|St−1 = i) is the likelihood function of
Markov regime switching GJR-GARCH model at time t− 1 given St−1 = i.

Therefore we have

p1t = Q11,t

[
g1,t−1p1,t−1

g1,t−1p1,t−1 + g2,t−1(1− p1,t−1)

]
+Q21,t

[
g2,t−1(1− p1,t−1)

g1,t−1p1,t−1 + g2,t−1(1− p1,t−1)

]
(12)

A.2 Proof of Lemma 2

(a)

ht = Wt +At(yt−1 −mt−1)2 +Btht−1 = Wt +At(ξ
2
t−1ht−1) +Btht−1

= Wt + (Bt +Atξ
2
t−1)ht−1

= Wt + (Bt +Atξ
2
t−1)[Wt−1 + (Bt−1 +At−1ξ

2
t−2)ht−2]

= Wt +Wt−1(Bt +Atξ
2
t−1) + (Bt +Atξ

2
t−1)(Bt−1 +At−1ξ

2
t−2)ht−2

...
= Wt +Wt−1(Bt +Atξ

2
t−1) + . . .+W1(Bt +Atξ

2
t−1)(Bt−1 +At−1ξ

2
t−2) . . . (B2 +A2ξ

2
1)

+ (Bt +Atξ
2
t−1)(Bt−1 +At−1ξ

2
t−2) . . . (B1 +A1ξ

2
0)h0.

Thus

ht = Wt +

t−1∑
k=1

Wk

t−k∏
j=1

(Bt−j+1 +At−j+1ξ
2
t−j) +

t−1∏
i=0

(Bi+1 +Ai+1ξ
2
i )h0.

(b)

ht =

[
t−1∏
i=0

(Bi+1 +Ai+1ξ
2
i )

]h0 +

t∑
k=1

k−1∏
j=0

Wk

(Bj+1 +Aj+1ξ2j )


=

t−1∏
i=0

(Bi+1 +Ai+1ξ
2
i )h0 +

t∑
k=1

Wk

t−1∏
i=0

(Bi+1 +Ai+1ξ
2
i )

k−1∏
j=0

1

(Bj+1 +Aj+1ξ2j )
,

by equating equations (a) and (b), we see that
∏t−1

i=0(Bi+1 +Ai+1ξ
2
i )h0 is common. We

show that

Wt +

t−1∑
k=1

Wk

t−k∏
j=1

(Bt−j+1 +At−j+1ξ
2
t−j) =

t∑
k=1

Wk

t−1∏
i=0

(Bi+1 +Ai+1ξ
2
i )

k−1∏
j=0

1

(Bj+1 +Aj+1ξ2j )
(13)

We will show that the right-hand term of (9) can be written like the left-hand term
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t∑
k=1

Wk

t−1∏
i=0

(Bi+1 +Ai+1ξ
2
i )

k−1∏
j=0

1

(Bj+1 +Aj+1ξ2j )

=

t−1∑
k=1

Wk

t−1∏
i=0

(Bi+1+Ai+1ξ
2
i )

k−1∏
j=0

1

(Bj+1 +Aj+1ξ2j )
+Wt

t−1∏
i=0

(Bi+1+Ai+1ξ
2
i )

t−1∏
j=0

1

(Bj+1 +Aj+1ξ2j )

=

t−1∑
k=1

Wk

(B1 +A1ξ
2
0) . . . (Bk +Akξ

2
k−1)(Bk+1 +Ak+1ξ

2
k) . . . (Bt +Atξ

2
t−1)

(B1 +A1ξ20) . . . (Bk +Akξ2k−1)

= Wt +

t−1∑
k=1

Wk(Bk+1 +Ak+1ξ
2
k) . . . (Bt +Atξ

2
t−1)

= Wt +
t−1∑
k=1

Wk

t∏
l=k+1

(Bl +Alξ
2
l−1)

= Wt +

t−1∑
k=1

Wk

t−1∏
j=1

(Bt−j+1 +At−j+1ξ
2
t−j).

Hence we have the desired equality in (9) and complete proof of Lemma 2.

A.3 Proof of Theorem 1

Note that given the data {y1, . . . , yt} at the present time t, probabilities pj,t+1 are
obtained by Lemma 1, and so are Wt+1, At+1, Bt+1. Let h̃t+` ≡ ht(`) be the `-step
ahead forecast of the volatility. First, we observe

h̃t+1 ≡ ht(1) = E[ht+1|Ft] = E[Wt+1 +At+1y
2
t +Bt+1ht|Ft]

= Wt+1 +At+1E[y2t |Ft] +Bt+1E[ht|Ft]

= Wt+1 +At+1y
2
t +Bt+1ht.

Secondly, we have

h̃t+2 ≡ ht(2) = E[ht+2|Ft] = E[Wt+2 +At+2y
2
t+1 +Bt+2ht+1|Ft]

= Wt+2 +At+2E[y2t+1|Ft] +Bt+2E[ht+1|Ft]

= Wt+2 + (At+2 +Bt+2)h̃t+1.

However, we estimate Wt+2, At+2, Bt+2 by means of the estimates of ps,t+2, s = 1, 2.
We use the formula given in (7) of Lemma 1 recursively to obtain (9) and (10) with
j = 2. Thus we use (8) with j = 2 to get h̃t+2 ≡ ht(2) = Ŵt+2 + (Ât+2 + B̂t+2)h̃t+1. For
general ` = 2, 3, · · · , we have
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h̃t+` ≡ ht(`) = E[ht+`|Ft] = Wt+` + (At+` +Bt+`)h̃t+`−1 (14)

= Wt+` + (At+` +Bt+`)[Wt+`−1 + (At+`−1 +Bt+`−1)h̃t+`−2] = · · · =

= Wt+` +

`−1∑
k=1

Wt+k

∏̀
j=k+1

(Aj+1 +Bj+1) +

`−1∏
j=1

(At+j+1 +Bt+j+1)h̃t+1,

provided all ps,t+j, s = 1, 2, are given. These probabilities are estimated recursively
by using Lemma 1 and the results are obtained along with (9) and (10) in Theorem
1.

A.4 Proof of Theorem 2

(a) For ηt = y2t − ht, since ht(1) = Wt+1 + At+1y
2
t +Bt+1ht = Wt+1 + (At+1 +Bt+1)y2t −

Bt+1ηt, we have λ1 = (At+1+Bt+1)−Bt+1 = At+1 in theorem 1 where
∂y2t
∂ηt

= 1 is used.

In effect λ1 =
∂ht(1)

∂ηt
=
∂ht(1)

∂y2t
· ∂y

2
t

∂ηt
with y2t = ηt + ht,

where
∂ht(1)

∂y2t
= At+1 +Bt+1 and

∂y2t
∂ηt

= 1,

hence λ1 = (At+1 +Bt+1)−Bt+1 = At+1.

For ` ≥ 2, by h̃t+` ≡ ht(`) = E[ht+`|Ft] = Wt+1 + (At+` +Bt+`)h̃t+`−1,

we have
∂ht(`)

∂ηt
= (At+` +Bt+`)

∂ht(`− 1)

∂ηt
.

By the same reason as the argument in the proof of Theorem 2, we use the
estimates Ât+j, B̂t+j and obtain the result in Theorem 2(a).

(b) If Ât+j + B̂t+j ≡ P̂1,t+j 41 +P̂2,t+j42 < 1, we have
λ` =

∏`−1
j=1(Ât+j+1 + B̂t+j+1)At+1 −→ 0 when `→∞.

(c) If Ât+j + B̂t+j ≡ P̃1,t+j 41 +P̂2,t+j42 > 1, we have
λ` =

∏`−1
j=1(Ât+j+1 + B̂t+j+1)At+1 −→∞ when `→∞.

Theorem 2(b)(c) are clear by Theorem 2(a).
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A.5 Proof of Theorem 3

The proof is technically the same as one in the Proof of Theorem 2.2 of
Hong and Hwang (2016) and so the proof is omitted.

Acknowledgment. The authors thank the editor-in-Chief for helpful suggestions
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