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1. Introduction

There are very useful and important generalizations of the Lindley distribution
in the literature that are suitable for modeling data with different types of haz-
ard rate functions: increasing, decreasing, bathtub and unimodal. Lindley(1958)
used a mixture of exponential and length-biased exponential distributions to
illustrate the difference between fiducial and posterior distributions. The re-
sulting mixture is called the Lindley (L) distribution. Oluyede and Yang(2015)
developed an extension of the Lindley distribution called the beta general-
ized Lindley distribution. A generalization of the Lindley distribution called Ku-
maraswamy Lindley distribution with applications to lifetime data was presented
by Oluyede et al.(2015). Ghitany et al.(2008) investigated the properties of Lindley
distribution. Nadarajah et al.(2011) studied the mathematical and statistical prop-
erties of the exponentiated or generalized Lindley (GL) distribution. The cumulative
distribution function (cdf) and probabilty density function (pdf) of the GL distribu-
tion are given by

GGL(x;α, λ) =

[
1− 1 + λ+ λx

1 + λ
exp(−λx)

]α
, (1)

and

gGL(x;α, λ) =
αλ2

1 + λ
(1 + x)

[
1− 1 + λ+ λx

1 + λ
exp(−λx)

]α−1
exp(−λx), (2)

for x > 0, λ > 0, and α > 0. This distribution is the exponentiated Lindley distribu-
tion. Ghitany et al.(2013) presented results on a two-parameter Lindley distribu-
tion referred to as power-Lindley distribution. Zakerzadeh and Dolati(2009) looked
at a different generalization of the Lindley distribution.
Lindley distribution is a mixture of exponential and gamma distributions, that is
f(x;λ) = (1 − p)fG(x;λ) + pfE(x;λ) with p = 1

1+λ , where fG(x;λ) ≡ GAM(2, λ), and
fE(x;λ) ≡ EXP (λ).
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1.1. Zografos and Balakrishnan Model

We consider the family of distributions with the pdf f(x) and cdf F (x) given as:

f(x) =
1

Γ (δ)ψδ
[−log(1−G(x))]δ−1 (1−G(x))

1
ψ−1 g(x), x ∈ R, δ > 0, (3)

and

F (x) =
1

Γ (δ)ψδ

∫ −log(1−G(x))

0

tδ−1e−t/ψdt =
γ
(
δ,−ψ−1log(1−G(x))

)
Γ (δ)

, (4)

respectively, where γ(x, δ) =
∫ x
0
tδ−1e−tdt is the incomplete gamma function

and take the cdf G(x) to be the exponentiated Lindley-log-logistic distribution
Oluyede et al.(2020). The corresponding hazard rate function is

hF (x) =
[−log(1−G(x))]δ−1 f(x)(1−G(x))1/ψ−1

ψδ (Γ (δ)− γ (−ψ−1log(1−G(x)), δ))
.

When ψ=1, this distribution is referred to as the Zografos and Balakrishian-G (ZB-
G) family of distributions Zografos and Balakrishnan(2009).

This paper employs exponentiation, competing risk transformation and ZB-G
formulation to obtain a new distribution involving both the Lindley and log-logistic
distributions. The new distribution called the gamma exponentiated Lindley log-
logistic (GELLLoG) distribution is quite useful, generalizes the Lindley, generalized
Lindley and log-logistic distributions, and is more flexible distribution for the de-
scription of reliability and lifetime data. The combined distribution of Lindley and
log-logistic is obtained from the product of the reliability or survival functions of
the Lindley and log-logistic distributions via competing risk model. A motivation
for developing this model is the advantages presented by this extended distribution
with respect to having a hazard function that exhibits increasing, decreasing and
bathtub shapes, as well as the versatility and flexibility of exponentiated distribu-
tions in general, as well as the Lindley and log-logistic distributions in modeling
lifetime data.

This paper is organized as follows. In section 2, some basic results, the GEL-
LLoG distribution and its sub-models, hazard function and the quantile function
are presented. The moments and moment generating function, mean and median
deviations are given in section 3. Section 4 contains some additional useful results
on the distribution of order statistics and Rényi entropy. In section 5, results on
the estimation of the parameters of the GELLLoG distribution via the method of
maximum likelihood are presented. A Monte Carlo simulation study is conducted
to examine the bias and mean square error of the maximum likelihood estima-
tors in section 6. Applications are given in section 7, followed by some concluding
remarks.
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2. The Model, Series Expansion of Density Function, Sub-models, Hazard
and Quantile Functions

In this section, we derive some properties of the new gamma exponentiated Lind-
ley log-Logistic (GELLLoG) distribution including expansion of the density, hazard
function, quantile function, sub-models, moments, conditional moments and max-
imum likelihood estimation of model parameters.

The cdf, survival function (sf) and pdf of the exponentiated Lindley log-logistic
(ELLLoG) distribution Oluyede et al.(2020) are given by

G(x;λ, c, α) =

[
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

]α
, (5)

G(x;λ, c, α) = 1−
[
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

]α
, (6)

and

g(x;λ, c, α) = α

[
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

]α−1
× (1 + xc)−1

1 + λ
e−λx

[
λ2(1 + x) +

(1 + λ+ λx)cxc−1

1 + xc

]
,

respectively, for λ, c, α > 0. If a random variable X has the ELLLoG distribution, we
write X ∼ ELLLoG(λ, c, α).

The cdf and pdf of the proposed gamma exponentiated Lindley log-logistic (GEL-
LLoG) distribution are given by

F
GELLLoG

(x;λ, c, α, δ) =
1

Γ (δ)

∫ − log
(
1−

(
1− 1+λ+λx

1+λ
e−λx
(1+xc)

)α)
0

tδ−1e−tdt

=
γ
(
− log

(
1−

(
1− 1+λ+λx

1+λ
e−λx

(1+xc)

)α)
, δ
)

Γ (δ)
, (7)

and

f
GELLLoG

(x;λ, c, α, δ) =
1

Γ (δ)

[
− log

(
1−

[
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

]α)]δ−1
× α

[
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

]α−1
× (1 + xc)−1

1 + λ
e−λx

[
λ2(1 + x) +

(1 + λ+ λx)cxc−1

1 + xc

]
, (8)

respectively, for λ, c, α, δ > 0, where γ(x, δ) =
∫ x
0
tδ−1e−tdt is the lower incomplete

gamma function. If a random variable X has the GELLLoG distribution, we write
X ∼ GELLLoG(λ, c, α, δ).
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Fig. 1: Plots of GELLLoG Density Function

2.1. Series Expansion of Density Function

In this section, series expansion of the GELLLoG density function is presented.
The results allows for the mathematical and statistical properties of the model to
be readily obtained.

Let y =
(
1− 1+λ+λx

1+λ
e−λx

(1+xc)

)α
, 0 < y < 1, α, λ, c > 0, then using the series

representation − log(1− y) =
∑∞
i=0

yi+1

i+1 , we have

[
− log(1− y)

]δ−1
= yδ−1

[ ∞∑
m=0

(
δ − 1

m

)
ym
( ∞∑
s=0

ys

s+ 2

)m]
,

and applying the result on power series raised to a positive integer, with as = (s+
2)−1, that is,

( ∞∑
s=0

asy
s

)m
=

∞∑
s=0

bs,my
s, (9)
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where bs,m = (sa0)
−1∑s

l=1[m(l + 1) − s]albs−l,m, and b0,m = am0 ,
Gradshteyn and Ryzhik(2000), the GELLLoG pdf can be written as

f
GELLLoG

(x) =
α

Γ (δ)

∞∑
m=0

∞∑
s=0

(
δ − 1

m

)
bs,my

m+s+δ−1
[
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

]α−1
× (1 + xc)−1

1 + λ
e−λx

[
λ2(1 + x) +

(1 + λ+ λx)cxc−1

1 + xc

]
=

α

Γ (δ)

∞∑
m=0

∞∑
s=0

(
δ − 1

m

)
bs,m

(m+ s+ δ)

(m+ s+ δ)

×
[
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

]α(m+s+δ)−1

× (1 + xc)−1

1 + λ
e−λx

[
λ2(1 + x) +

(1 + λ+ λx)cxc−1

1 + xc

]
=

∞∑
m=0

∞∑
s=0

(
δ − 1

m

)
αbs,m

(m+ s+ δ)Γ (δ)
g
ELLLoG

(x; c, λ, α∗), (10)

where g
ELLLoG

(x; c, λ, α∗) is the exponentiated Lindley-log-logistic (ELLLoG) pdf with
parameters c, λ, and α∗ = α(m+ s+ δ) > 0. Let D = {(m, s) ∈ Z2

+}, then the weights
in the GELLLoG pdf are

ων =

(
δ − 1

m

)
αbm,s

(m+ s+ δ)Γ (δ)
, (11)

and
f
GELLLoG

(x) =
∑
ν∈D

ωνgELLLoG(x; c, λ, α(m+ s+ δ)). (12)

It follows therefore that the GELLLoG density is an infinite linear combination of
the ELLLoG pdfs. The statistical and mathematical properties of the GELLLoG dis-
tribution can be readily obtained from those of the ELLLoG distribution.

2.2. Sub-models of GELLLoG Distribution

In this subsection, some useful and important sub-models are presented.

– When λ→ 0+, the resulting distribution is the gamma exponentiated log-logistic
(GELLoG) distribution.

– When λ→ 0+, and α = 1, we obtain the gamma log-logistic (GLLoG) distribution.
– We obtain gamma Lindley log-logistic (GLLLoG) distribution with α = 1.
– When δ = 1, we obtain the baseline exponentiated Lindley log-logistic (ELLLoG)

distribution.
– When δ = α = 1, we obtain the Lindley log-logistic (LLLoG) distribution.
– When λ → 0+, and δ = 1, we obtain the exponentiated log-logistic (ELLoG) dis-

tribution.
– If λ→ 0+ and α = δ = 1, we obtain log-logistic (LLoG) distribution.
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– If δ = c = 1, and λ → 0+, we obtain one parameter distribution denoted by
GELLLoG(1, 1, α, 1), with the cdf

F (x;α) =

[
1− 1

(1 + x)

]α
, α > 0. (13)

– If δ = c = 1, we obtain the two parameter distribution denoted by
GELLLoG(λ, 1, α, 1), with the cdf

F (x;λ, α) =

[
1− 1 + λ+ λx

1 + λ

e−λx

(1 + x)

]α
, λ, α > 0. (14)

– If δ = c = α = 1, we obtain the one parameter distribution denoted by
GELLLoG(λ, 1, 1, 1), with the cdf

F (x;λ) = 1− 1 + λ+ λx

1 + λ

e−λx

(1 + x)
, λ > 0. (15)

– If α = c = 1, we obtain the two parameter distribution denoted by
GELLLoG(λ, 1, 1, δ), with the cdf

F (x;λ, δ) =
1

Γ (δ)
γ

(
− log

(
1−

(
1− 1 + λ+ λx

1 + λ

e−λx

1 + x

))
, δ

)
, λ, δ > 0. (16)

– If c=1, we obtain the three parameter distribution denoted by
GELLLoG(λ, 1, α, δ), with the cdf

F (x;λ, α, δ) =
1

Γ (δ)
γ

(
− log

(
1−

(
1− 1 + λ+ λx

1 + λ

e−λx

1 + x

)α)
, δ

)
, λ, δ > 0. (17)
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2.3. Hazard and Quantile Functions

In this section, we present the hazard and quantile functions of the GELLLoG dis-
tribution. Plots of the hazard function for selected values of the model parameters
are presented in Figure 2. The hazard rate function of the GELLLoG distribution
is given by

hFGELLLoG(x) =
fGELLLoG(x)

FGELLLoG(x)

=

[
− log

(
1−

[
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

]α)]δ−1
× α

[
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

]α−1
× (1 + xc)−1

1 + λ
e−λx

[
λ2(1 + x) +

(1 + λ+ λx)cxc−1

1 + xc

]
×
[
Γ (δ)− γ

(
− log

(
1−

(
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

)α)
, δ

)]−1
.

Plots of the GELLLoG hazard below shows different shapes including decreasing,
increasing, bathtub followed by upside down, upside down bathtub, and bathtub
shapes.

Fig. 2: Plots of GELLLoG Hazard Function

The quantile function of the GELLLoG distribution is obtained by solving the
non-linear equation:

γ

(
− log

(
1−

(
1− 1+λ+λx

1+λ
e−λx

(1+xc)

)α)
, δ

)
Γ (δ)

= u, (18)
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0 ≤ u ≤ 1, that is, (
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

)α
= 1− e−γ

−1(uΓ (δ),δ), (19)

so that
1 + λ+ λx

1 + λ

e−λx

(1 + xc)
= 1−

(
1− e−γ

−1(uΓ (δ),δ)
)1/α

. (20)

Consequently, random numbers can be generated for the GELLLoG distribution by
numerically solving the nonlinear equation

λx+ log(1 + xc)− log

(
1 +

λx

1 + λ

)
+ log

(
1−

(
1− e−γ

−1(uΓ (δ),δ)
)1/α)

= 0. (21)

Table 1 presents quantiles of the GELLLoG distribution for selected values of the
model parameters λ, c, α and δ.

Table 1: Table of Quantiles for GELLLoG Distribution
(λ, c, α, δ)

u (1.2, 1.2, 1, 1.8)) (0.2, 1.5, 2.2, 2) (0.8, 1.2, 2, 1) (2, 1, 1, 2.2) (1, 1.8, 2.6, 2)

0.1 0.2943 1.4788 0.3456 0.2970 0.9711
0.2 0.4582 2.0185 0.5276 0.4557 1.2086
0.3 0.6130 2.5516 0.7021 0.6062 1.4150
0.4 0.7726 3.1391 0.8868 0.7636 1.6199
0.5 0.9460 3.8300 1.0944 0.9395 1.8390
0.6 1.1430 4.6905 1.3409 1.1496 2.0886
0.7 1.3780 5.8378 1.6538 1.4253 2.3939
0.8 1.6776 7.5312 2.0931 1.8588 2.8079
0.9 2.1043 10.6012 2.8509 3.4573 3.4967

3. Moments, Conditional Moments, Mean and Median Deviations

In this section, we present the moments, moment generating function, mean and
median deviations for the GELLLoG distribution. Moments are very important and
necessary in any statistical analysis, especially in applications. Moments can be
used to study the most important features and characteristics of a distribution
(e.g., central tendency, dispersion, skewness and kurtosis). These measures (mo-
ments, moment generating function, mean and median deviations) can be readily
obtained for the sub-models given in section 2.

3.1. Moments and Moment Generating Function

Let α∗ = α(m + s + δ), and Y ∼ ELLLoG(c, λ, α∗). Note that the kth moment of the
ELLLoG random variable Y is obtained as follows. The kth raw moment, µ′k of the

Journal home page: www.jafristat.net, www.projecteuclid.org/euclid.as



T. Moakofi, B. Oluyede B. Makubate, Afrika Statistika, Vol. 15 (4), 2020, pages 2451 -
2481. New Gamma Generalized Lindley-Log-logistic Distribution with Applications. 2460

ELLLoG distribution is given by:

E(Y k) =

∫ ∞
0

ykg
ELLLoG

(y;λ, c, α(m+ s+ δ))dy

=

∫ ∞
0

ykα(m+ s+ δ)

[
1− 1 + λ+ λy

1 + λ

e−λy

(1 + yc)

]α(m+s+δ)−1

× (1 + yc)−1

1 + λ
e−λy

[
λ2(1 + y) +

(1 + λ+ λy)cyc−1

1 + yc

]
dy

=

∞∑
t=0

(
α(m+ s+ δ)− 1

t

)
(−1)tα(m+ s+ δ)

∫ ∞
0

yk
[
1 + λ+ λy

1 + λ

e−λy

(1 + yc)

]t
× (1 + yc)−1

1 + λ
e−λy

[
λ2(1 + y) +

(1 + λ+ λy)cyc−1

1 + yc

]
dy

=

∞∑
t,p=0

α(m+ s+ δ)(−1)t+p[λ(t+ 1)]p

(1 + λ)t+1p!

(
α(m+ s+ δ)− 1

t

)

×
[
λ2
∞∑
q=0

(
t

q

)
λq(1 + λ)t−q

∫ ∞
0

yk+p+q(1 + y)(1 + yc)−t−1dy

+ c

∞∑
q=0

(
t+ 1

q

)
λq(1 + λ)t+1−q

∫ ∞
0

yk+p+c+q−1(1 + yc)−t−2dy

]
. (22)

We note that by applying (1 + λ + λy)t+1 =
∑∞
q=0

(
t+1
q

)
(λy)q(1 + λ)t+1−q,

(1 + λ + λy)t =
∑∞
q=0

(
t
q

)
(λy)q(1 + λ)t−q, and the substitution w = (1 + yc)−1,

we have

E(Y k) =

∞∑
t,p=0

α(m+ s+ δ)(−1)t+p[λ(t+ 1)]p

(1 + λ)t+1p!

(
α(m+ s+ δ)− 1

t

)

×
[ ∞∑
q=0

(
t

q

)
λq+2 (1 + λ)t−q

c

∫ 1

0

wt+1− k+p+q+1
c −1(1− w)

k+p+q+1
c −1dw

+

∫ 1

0

wt+1− k+p+q+2
c −1(1− w)

k+p+q+2
c −1dw

+ c

∞∑
q=0

(
t+ 1

q

)
λq(1 + λ)t+1−q

∫ 1

0

wt+2− k+p+c+qc −1(1− w)
k+q+p+c+q

c −1dt

]
.

(23)
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Consequently,

E(Y k) =

∞∑
t,p=0

α(m+ s+ δ)(−1)t+p[λ(t+ 1)]p

(1 + λ)t+1p!

(
α(m+ s+ δ)− 1

t

)

×
[ ∞∑
q=0

(
t

q

)
λq+2 (1 + λ)t−q

c

(
B

(
t+ 1− k + p+ q + 1

c
,
k + p+ q + 1

c

)
+ B

(
t+ 1− k + p+ q + 2

c
,
k + p+ q + 2

c

))
+ c

∞∑
q=0

(
t+ 1

q

)
λq(1 + λ)t+1−q

× B

(
t+ 2− k + p+ c+ q

c
,
k + q + p+ c+ q

c

)]
. (24)

Thus, the kth moments of the GELLLoG distribution is given by

E(Xk) =
∑
ν∈D

ων∆(t, p, q, c, λ, k), (25)

where ∆(t, p, q, c, λ, k) is given by equation (24). The moment generating function of
the GELLLoG class of distribution is given by E(etX) =

∑∞
k=0

tk

k!E(Xk), where E(Xk)
is given by the equation (25). The coefficients of variation (CV), Skewness (CS) and
Kurtosis (CK) can be readily obtained. The variance (σ2), Standard deviation (SD=σ),
coefficient of variation (CV), coefficient of skewness (CS) and coefficient of kurtosis
(CK) are given by

σ2 = µ′2 − µ2, CV =
σ

µ
=

√
µ′2 − µ2

µ
=

√
µ′2
µ2
− 1,

CS =
E
[
(X − µ)3

]
[E(X − µ)2]3/2

=
µ′3 − 3µµ′2 + 2µ3

(µ′2 − µ2)3/2
,

and

CK =
E
[
(X − µ)4

]
[E(X − µ)2]2

=
µ′4 − 4µµ′3 + 6µ2µ′2 − 3µ4

(µ′2 − µ2)2
,

respectively.
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Some moments for selected parameters values are given in Table 2 and plots
of CS and CK versus the shape parameters, α, c and δ are presented in Figure 3,
Figure 4 and Figure 5. Plots of skewness and kurtosis for choices of the model
parameters reveal that skewness and kurtosis depend on the parameters α, c, and δ.

Table 2: Table of Moments for Selected Parameters Values of GELLLoG Distribution
(0.1,0.2,0.2,0.5) (1.8,1.5,2.2,0.5) (0.8,1.0,2.2,1.0) (2.0,2.2,0.2,1.8) (0.1,1.0,2.0,0.5)

E(X) 0.0080 0.2415 0.2861 0.1690 0.3272
E(X2) 0.0039 0.1321 0.1611 0.0727 0.2062
E(X3) 0.0025 0.0889 0.1088 0.0422 0.1474
E(X4) 0.0019 0.0665 0.0811 0.0285 0.1135
E(X5) 0.0015 0.0530 0.0642 0.0210 0.0918
E(X6) 0.0012 0.0439 0.0529 0.0164 0.0769

SD 0.0011 0.0375 0.0450 0.0133 0.0660
CV 0.0009 0.0327 0.0390 0.0112 0.0577
CS 0.0008 0.0290 0.0344 0.0096 0.0513
CK 0.0007 0.02607 0.0308 0.0084 0.0461

Fig. 3: Plots of Skewness and Kurtosis for parameter alpha
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Fig. 4: Plots of Skewness and Kurtosis for parameter c

Fig. 5: Plots of Skewness and Kurtosis for parameter delta
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3.2. Conditional Moments

The mean residual life function, vitality function and related reliability measures
can be readily obtained from the conditional moments of a distribution.
The kth conditional moments for the GELLLoG distribution is given by

E(Xk|X > a) =
1

F
GELLLoG

(a)

∫ ∞
t

xkf
GELLLoG

(x; c, λ, α, δ)dx

=
1

F
GELLLoG

(a)

∑
ν∈D

∞∑
t,p=0

ων
α(m+ s+ δ)(−1)t+p[λ(t+ 1)]p

(1 + λ)t+1p!

×
(
α(m+ s+ δ)− 1

t

)[ ∞∑
q=0

(
t

q

)
λq+2 (1 + λ)t−q

c

×
(
B(1+ac)−1

(
t+ 1− k + p+ q + 1

c
,
k + p+ q + 1

c

)
+ B(1+ac)−1

(
t+ 1− k + p+ q + 2

c
,
k + p+ q + 2

c

))
+ c

∞∑
q=0

(
t+ 1

q

)
λq(1 + λ)t+1−q

× B(1+ac)−1

(
t+ 2− k + p+ c+ q

c
,
k + q + p+ c+ q

c

)]
,

where B(1+ac)−1(a, b) is the incomplete beta function.

3.3. Mean Deviation, Lorenz and Bonferroni Curves

Mean deviation about the mean and mean deviation about the median as well as
Lorenz and Bonferroni curves for the GELLLoG distribution are presented in this
subsection.

3.3.1. Mean Deviations

The mean deviation about the mean and the mean deviation about the median
are defined by

δ1(x) =

∫ ∞
0

|x− µ|f
GELLLoG

(x)dx and δ2(x) =

∫ ∞
0

|x−M |f
GELLLoG

(x)dx, (26)

respectively, where µ = E[X] and M =Median(X) denotes the median. We note that
δ1(x) and δ2(x) can be expressed as δ1(x) = 2µF

GELLLoG
(µ)− 2µ+ 2

∫∞
µ
f
GELLLoG

(x)dx

and δ2(x) = −µ+ 2
∫∞
M
xf

GELLLoG
(x)dx, respectively, that is,

δ1(x) = 2µF
GELLLoG

(µ)− 2µ+ 2T (µ) and δ2(x) = 2T (M)− µ, (27)
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where

T (µ) =

∫ ∞
µ

xf
GELLLoG

(x)dx

=
∑
ν∈D

∞∑
t,p=0

ων
α(m+ s+ δ)(−1)t+p[λ(t+ 1)]p

(1 + λ)t+1p!

×
(
α(m+ s+ δ)− 1

t

)[ ∞∑
q=0

(
t

q

)
λq+2 (1 + λ)t−q

c

×
(
B(1+µc)−1

(
t+ 1− 1 + p+ q + 1

c
,
1 + p+ q + 1

c

)
+ B(1+µc)−1

(
t+ 1− 1 + p+ q + 2

c
,
1 + p+ q + 2

c

))
+ c

∞∑
q=0

(
t+ 1

q

)
λq(1 + λ)t+1−q

× B(1+µc)−1

(
t+ 2− 1 + p+ c+ q

c
,
1 + q + p+ c+ q

c

)]
. (28)

3.3.2. Lorenz and Bonferroni Curves

Lorenz and Bonferroni curves are applicable to economics for the study of income
and poverty, and are also usefull in other areas such as reliability, demography, in-
surance and medicine. Bonferroni and Lorenz curves for the GELLLoG distibution
are given as

B(p) =
1

pµ

∫ q

0

xf
GELLLoG

(x)dx =
1

pµ
[µ− T (q)],

and
L(p) =

1

µ

∫ q

0

xf
GELLLoG

(x)dx =
1

µ
[µ− T (q)],

respectively, where T (q) =
∫∞
q
xf

GELLLoG
(x)dx is given by equation (28), q =

F−1
GELLLoG

(p), 0 ≤ p ≤ 1.

4. Order Statistics and Rényi Entropy

Order statistics play an important role in probability and statistics, particularly
in reliability and lifetime data analysis. The concept of entropy plays a vital role
in information theory. In this section, we present the distribution of the ith order
statistics and Rényi entropy for the GELLLoG distribution.
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4.1. Order Statistics

In this subsection, the pdf of the ith order statistic and the correspond-
ing moments are presented. Let X1, X2, ...., Xn be independent and identi-
cally distributed GELLLoG random variables. Using the binomial expansion
(1 − GGELLLoG(x))

n−i =
∑n−i
j=0

(
n−i
j

)
(−1)j [GGELLLoG(x)]j , the pdf of the ith order

statistic from the GELLLoG pdf f
GELLLoG

(x) can be written as

fi:n(x) =
n!f

GELLLoG
(x)

(i− 1)!(n− i)!
[F
GELLLoG

(x)]
i−1

[1− F
GELLLoG

(x)]n−i

=
n!f

GELLLoG
(x)

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

)

×
[γ (− log

(
1−

(
1− 1+λ+λx

1+λ
e−λx

(1+xc)

)α)
, δ
)

Γ (δ)

]i+j−1
. (29)

Now, let 0 < y =
(
1− 1+λ+λx

1+λ
e−λx

(1+xc)

)α
< 1, x > 0, c, λ, α > 0. Using the fact that

γ(x, δ) =
∑∞
m=0

(−1)mxm+δ

(m+δ)m! , and setting cm = (−1)m/((m+ δ)m!), we can write the pdf
of the ith order statistic from the GELLLoG distribution as follows:

fi:n(x) =
n!f

GELLLoG
(x)

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)j

[Γ (δ)]i+j−1

×
[
− log

(
1−

(
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

)α)]δ(i+j−1)

×
[ ∞∑
m=0

(−1)m
(
log
(
1−

(
1− 1+λ+λx

1+λ
e−λx

(1+xc)

)α))m
(m+ δ)m!

]i+j−1

=
n!f

GELLLoG
(x)

(i− 1)!(n− i)!

n−i∑
j=0

(
n− i
j

)
(−1)j

[Γ (δ)]i+j−1

×
[
− log

(
1−

(
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

)α)]δ(i+j−1)
×

∞∑
m=0

dm,i+j−1

[
− log

(
1−

(
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

)α)]m
, (30)

where d0 = c
(i+j−1)
0 , dm,i+j−1 = (mc0)

−1∑m
l=1[(i+ j − 1)l −m+ l]cldm−l,i+j−1. We note

that the pdf of the ith order statistic from the GELLLOG distribution can be written
as
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fi:n(x) =
n!f

GELLLoG
(x)

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
m=0

(
n− i
j

)
(−1)jdm,i+j−1
[Γ (δ)]i+j−1

×
[
− log

(
1−

(
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

)α)]δ(i+j−1)+m

=
n!
[
− log

(
1−

(
1− 1+λ+λx

1+λ
e−λx

(1+xc)

)α)]δ−1
(i− 1)!(n− i)!Γ (δ)

α

[
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

]α−1
× (1 + xc)−1

1 + λ
e−λx

[
λ2(1 + x) +

(1 + λ+ λx)cxc−1

1 + xc

]
×

n−i∑
j=0

∞∑
m=0

(
n− i
j

)
(−1)jdm,i+j−1
[Γ (δ)]i+j−1

×
[
− log

(
1−

(
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

)α)]δ(i+j−1)+m
=

n!

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
m=0

(
n− i
j

)
(−1)jdm,i+j−1
[Γ (δ)]i+j−1

× Γ (δ(i+ j − 1) +m+ δ)

Γ (δ(i+ j − 1) +m+ δ)

[
− log

(
1−

(
1− 1+λ+λx

1+λ
e−λx

(1+xc)

)α)]δ(i+j−1)+m+δ−1

Γ (δ)

× α

[
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

]α−1
× (1 + xc)−1

1 + λ
e−λx

[
λ2(1 + x) +

(1 + λ+ λx)cxc−1

1 + xc

]
=

n!

(i− 1)!(n− i)!

n−i∑
j=0

∞∑
m=0

(
n− i
j

)

× (−1)jdm,i+j−1Γ (δ(i+ j − 1) +m+ δ)

[Γ (δ)]i+j
fGELLLoG(x),

where

fGELLLoG(x) =

[
− log

(
1−

(
1− 1+λ+λx

1+λ
e−λx

(1+xc)

)α)]δ(i+j−1)+m+δ−1

Γ (δ(i+ j − 1) +m+ δ)

× α

[
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

]α−1
× (1 + xc)−1

1 + λ
e−λx

[
λ2(1 + x) +

(1 + λ+ λx)cxc−1

1 + xc

]
(31)

is the GELLLoG pdf with parameters c, λ, α > 0, and shape parameter δ∗ = δ(i+ j)+
m > 0. It follows therefore that the tth moment of the ith order statistic from the
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GELLLoG density is given by

E(Xt
i:n) =

∑
ν∈D

n−i∑
j=0

∞∑
m=0

ων`i,j,mE(Xt), (32)

where E(Xt) is the tth moment of the GELLLoG distribution given by (25) with the
parameters c, α, λ and δ(i+ j) +m > 0,

`i,j,m =
n!

(i− 1)!(n− i)!
(−1)jdm,i+j−1Γ (δ(i+ j) +m)

[Γ (δ)]i+j
.

We note that these moments are often used in several areas including reliability,
survival analysis, biometry, engineering, insurance and quality control for the pre-
diction of future failures times from a set of past or previous failures.

4.2. Rényi Entropy

Rényi entropy Rényi(1960) is an extension of Shannon entropy. Rényi entropy is
defined to be

IR(v) =
1

1− v
log

(∫ ∞
0

[f
GELLLoG

(x; c, α, λ, δ)]vdx

)
, v 6= 1, v > 0. (33)

Rényi entropy tends to Shannon entropy as v → 1. Note that∫ ∞
0

fv
GELLLoG

(x)dx =

(
1

Γ (δ)

)v ∫ ∞
0

[
− log

(
1−

[
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

]α)]v(δ−1)
× αv

[
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

]v(α−1)
× (1 + xc)−v

(1 + λ)v
e−λvx

[
λ2(1 + x) +

(1 + λ+ λx)cxc−1

1 + xc

]v
dx. (34)

Let 0 < y =

[
1− 1+λ+λx

1+λ
e−λx

(1+xc)

]α
< 1. Note that

(
λ2(1 + x) + (1 + λ+ λx)(1 + xc)−1cxc−1

)v
=

∞∑
p=0

(
v

p

)
λ2(v−p)(1 + x)v−pcpxcp−p

× (1 + λ+ λx)p

(1 + xc)p
,

and[
− log

(
1−

[
1− 1 + λ+ λx

1 + λ

e−λx

(1 + xc)

]α)]v(δ−1)
=

∞∑
m,s=0

(
vδ − v
m

)
ds,my

m+s+δ−1,

by applying the result on power series raised to a positive integer, with cs = (s+2)−1,
that is, ( ∞∑

s=0

csy
s

)m
=

∞∑
s=0

ds,my
s, (35)
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where ds,m = (sc0)
−1∑s

l=1[m(l + 1) − s]clds−l,m, and d0,m = cm0 ,
Gradshteyn and Ryzhik(2000), so that∫ ∞
0

fv
GELLLoG

(x)dx =

(
1

Γ (δ)

)v ∞∑
m,s,p,k,q,t,w=0

ds,m

(
vδ − v
m

)(
v

p

)(
v − p
t

)(
k + p

w

)

× Γ (α(m+ s+ δ + v − 1)− v + 1)

Γ (α(m+ s+ δ + v − 1)− v + 1− k)k!

× cpλ2(v−p)+w(−1)q[λ(k + v)]q

q!(1 + λ)v−p+w

×
∫ ∞
0

xcp−p+q+w+t(1 + xc)−v−k−pdx.

Now, with y = (1 + xc)−1, Rényi entropy for the GELLLoG distribution reduces to

IR(v) =
1

1− v
log

[(
1

cΓ (δ)

)v ∞∑
m,s,p,k,q,t,w=0

ds,m

(
vδ − v
m

)(
v

p

)(
v − p
t

)(
k + p

w

)

× Γ (α(m+ s+ δ + v − 1)− v + 1)

Γ (α(m+ s+ δ + v − 1)− v + 1− k)k!
cpλ2(v−p)+w(−1)q[λ(k + v)]q

q!(1 + λ)v−p+w

× B

(
v + k + p− cp+ q + w + t− p+ 1

c
,
cp+ q + w + t− p+ 1

c

)]
,

for v > 0, v 6= 1, where B(a, b) =
∫ 1

0
ta−1(1− t)b−1 is the beta function.

5. Maximum Likelihood Estimation

Let X ∼ GELLLoG(c, α, λ, δ) and ∆ = (c, α, λ, δ)T be the parameter vector. The log-
likelihood `n = `n(∆) based on a random sample of size n from the GLLoGW distri-
bution is given by

`n(∆) = −n lnΓ (δ) + (δ − 1)

n∑
i=1

ln

[
− ln

(
1−

[
1− 1 + λ+ λxi

1 + λ

e−λxi

(1 + xci )

]α)]

+ n ln(α) + (α− 1)

n∑
i=1

ln

[
1− 1 + λ+ λxi

1 + λ

e−λxi

(1 + xci )

]
−

n∑
i=1

ln(1 + xci )

− n ln(1 + λ)−
n∑
i=1

λxi +

n∑
i=1

ln

[
λ2(1 + xi) +

(1 + λ+ λxi)cx
c−1
i

(1 + xci )

]
. (36)

The first derivative of the log-likelihood function with respect to each component
of the parameter vector ∆ = (c, α, λ, δ)T can be readily obtained. The equations
obtained by setting the partial derivatives to zero are not in closed form and the
values of the parameters c, α, λ, and δ must be found by using iterative methods.
The maximum likelihood estimates of the parameters, denoted by ∆̂ is obtained by
solving the nonlinear equation (∂`n∂c ,

∂`n
∂α ,

∂`n
∂λ ,

∂`n
∂δ )

T = 0, using a numerical method
such as Newton-Raphson procedure. The Fisher information matrix is given by

Journal home page: www.jafristat.net, www.projecteuclid.org/euclid.as



T. Moakofi, B. Oluyede B. Makubate, Afrika Statistika, Vol. 15 (4), 2020, pages 2451 -
2481. New Gamma Generalized Lindley-Log-logistic Distribution with Applications. 2470

I(∆) = [Iθi,θj ]4X4 = E(− ∂2`n
∂θi∂θj

), i, j = 1, 2, 3, 4 can be numerically obtained by MAT-
LAB, SAS or R software. The total Fisher information matrix nI(∆) can be approx-
imated by

Jn(∆̂) ≈
[
− ∂2`n
∂θi∂θj

∣∣∣∣
∆=∆̂

]
4X4

, i, j = 1, 2, 3, 4. (37)

For a given set of observations, the matrix given in equation (37) is obtained after
the convergence of the Newton-Raphson procedure. The expectations in the Fisher
Information Matrix (FIM) can be obtained numerically. Let ∆̂ = (ĉ, α̂, λ̂, δ̂) be the
maximum likelihood estimate of ∆ = (c, α, λ, δ). Under the usual regularity condi-
tions and that the parameters are in the interior of the parameter space, but not
on the boundary, we have:

√
n(∆̂−∆)

d−→ N4(0, I
−1(∆)), where I(∆) is the expected

Fisher information matrix. The asymptotic behavior is still valid if I(∆) is replaced
by the observed information matrix evaluated at ∆̂, that is J(∆̂). The multivari-
ate normal distribution N4(0, J(∆̂)−1), where the mean vector 0 = (0, 0, 0, 0)T , can
be used to construct confidence intervals and confidence regions for the individ-
ual model parameters and for the survival and hazard rate functions. That is, the
approximate 100(1 − η)% two-sided confidence intervals for c, α, λ and δ are given
by:

ĉ± Z η
2

√
I−1cc (∆̂), α̂± Z η

2

√
I−1αα(∆̂), λ̂± Z η

2

√
I−1λλ (∆̂), δ̂ ± Z η

2

√
I−1δδ (∆̂),

respectively, where I−1cc (∆̂), I−1αα(∆̂), I−1λλ (∆̂), and I−1δδ (∆̂) are the diagonal elements
of I−1n (∆̂) = (nI(∆̂))−1, and Z η

2
is the upper η

2
th percentile of a standard normal

distribution.
We maximize the likelihood function using NLmixed in SAS as well as the func-

tion nlm in R rdevelopmentcoreteam(2011). These functions were applied and ex-
ecuted for wide range of initial values. This process often results or lead to more
than one maximum, however, in these cases, we take the MLEs corresponding to
the largest value of the maxima. In a few cases, no maximum was identified for the
selected initial values. In these cases, a new initial value was tried in order to obtain
a maximum.The issues of existence and uniqueness of the MLEs are theoretical
interest and has been studied by several authors for different distributions includ-
ing Seregin(2010), Santos and Tenreyro(2010), Zhou(2009), and Xia et al.(2009). At
this point we are not able to address the theoretical aspects (existence, uniqueness)
of the MLE of the parameters of the GELLLoG distribution.

The maximum likelihood estimates (MLEs) of the GELLLoG parameters c, α,
λ, and δ are computed by maximizing the objective function via the subrou-
tine NLmixed in SAS and the function nlm in R. The estimated values of the
parameters (standard error in parenthesis), -2log-likelihood statistic (−2 ln(L)),
Akaike Information Criterion (AIC = 2p − 2 ln(L)), Bayesian Information Cri-
terion (BIC = p ln(n) − 2 ln(L)), and Consistent Akaike Information Criterion(
AICC = AIC + 2 p(p+1)

n−p−1

)
, where L = L(∆̂) is the value of the likelihood function

evaluated at the parameter estimates, n is the number of observations, and p is the
number of estimated parameters are presented. In order to compare the models,
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we use the criteria stated above. Note that for the value of the log-likelihood
function at its maximum (`n), larger value is good and preferred, and for AIC,
AICC and BIC, smaller values are preferred. The GELLLoG distribution is fitted
to the data sets and these fits are compared to the fits of the nested gamma
exponentiated log-logistic (GELLoG), Lindley-log-logistic (LLLoG), and log-logistic
distributions (LLoG), and several non-nested distributions given in section 7.

The likelihood ratio (LR) test is applied to compare the fit of the GELLLoG dis-
tribution with its sub-models for a given data set. For example, to test δ = 1, the
LR statistic is ω = 2[ln(L(ĉ, α̂, λ̂, δ̂)) − ln(L(c̃, α̃, λ̃, 1))], where ĉ, α̂, λ̂, and δ̂ are the
unrestricted estimates, and c̃, α̃, and λ̃ are the restricted estimates. The LR test
rejects the null hypothesis if ω > χ2

ε
, where χ2

ε
denote the upper 100ε% point of the

χ2 distribution with 1 degree of freedom.

6. Simulation Study

In this section, we examine the performance of the GELLLoG distribution by con-
ducting various simulations for different sizes (n=25, 50, 100, 200, 400, 800) via
the R package. We simulate N = 2000 samples for the true parameters values given
in the Table 3. The table lists the mean MLEs of the four model parameters along
with the respective root mean squared errors (RMSEs). From the results, we can
verify that as the sample size n increases, the mean estimates of the parameters
tend to be closer to the true parameter values, since RMSEs decay toward zero.
The bias and RMSE for the estimated parameter θ̂, say, are given by:

Bias(θ̂) =

∑n
i=1 θ̂i
n

− θ, and RMSE(θ̂) =

√∑n
i=1(θ̂i − θ)2

n
,

respectively.
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Table 3: Monte Carlo Simulation Results
(1.0,2.5,1.0,2.0) (1.5,2.0,1.0,2.0) (2.0,1.0,3.0,1.0)

parameter Sample Size Mean RMSE Bias Mean RMSE Bias Mean RMSE Bias
λ 35 1.6155 1.3790 0.6155 2.0458 1.3208 0.5458 2.7723 1.4651 0.7723

50 1.4916 1.1719 0.4916 1.9560 1.2516 0.4560 2.5528 1.2286 0.5528
100 1.3178 0.9065 0.3178 1.8398 1.0126 0.3397 2.4102 0.9590 0.4102
200 1.1820 0.6118 0.1820 1.71647 0.7932 0.2164 2.2497 0.6901 0.2497
400 1.1122 0.4292 0.1122 1.6470 0.6060 0.1470 2.1503 0.5352 0.1503
800 1.0550 0.2932 0.0550 1.5893 0.4428 0.0893 2.0678 0.4055 0.0678

c 35 2.0212 1.2877 -0.4787 1.6426 1.1469 -0.3573 1.1900 0.9087 0.1900
50 2.0901 1.2225 -0.4098 1.6338 1.0348 -0.3661 1.1487 0.6768 0.1487

100 2.1640 1.0116 -0.3351 1.6559 0.9061 -0.3440 1.0954 0.4732 0.0954
200 2.2644 0.7613 -0.2355 1.6734 0.7595 -0.3265 1.0722 0.3848 0.0722
400 2.3433 0.5544 -0.1566 1.7840 0.6140 -0.2159 1.0628 0.3169 0.0628
800 2.4305 0.3781 -0.0694 1.8432 0.4621 -0.1567 1.0459 0.2826 0.0459

α 35 2.0618 2.4833 1.0618 1.8239 2.0295 0.8239 2.4286 2.1427 -0.5713
50 1.9298 2.3119 0.9298 1.7459 1.7429 0.7459 2.5856 2.1084 -0.4143

100 1.8306 2.0975 0.8306 1.6569 1.6916 0.6569 2.6287 1.9137 -0.3712
200 1.6500 1.7575 0.6500 1.6298 1.5404 0.6298 2.7726 1.6800 -0.2273
400 1.4112 1.4684 0.4112 1.3464 1.0195 0.3464 2.9444 1.6574 -0.0555
800 1.1481 0.7029 0.1481 1.2392 0.9252 0.2392 3.0005 1.3830 0.0005

δ 35 2.6765 2.1522 0.6765 2.5907 2.0466 0.5907 2.1088 2.0959 1.1088
50 2.5350 1.7651 0.5350 2.4733 1.9415 0.4733 1.8387 1.7348 0.8387

100 2.2934 1.4306 0.2934 2.3002 1.5411 0.3002 1.6543 1.3991 0.6543
200 2.1168 1.0218 0.1168 2.0839 1.1625 0.0839 1.4012 0.9425 0.4012
400 2.0405 0.7137 0.0405 2.0596 0.8639 0.0596 1.2569 0.7230 0.2569
800 2.0349 0.4869 0.0349 2.0282 0.6477 0.0282 1.1451 0.5387 0.1451

7. Applications

In this section, we present examples to illustrate the flexibility and usefulness of
the GELLLoG distribution and its sub-models for data modeling. We also compare
GELLLoG distribution to the non-nested new modified Weibull (NMW) distribution
introduced by Doostmoradi et al.(2014), a four parameter beta generalized expo-
nential (BGE) distribution introduced by Barreto-Souza et al. (2010), beta gener-
alized Lindley (BGL) distribution by Oluyede and Yang(2015) and exponentiated
modified Weibull distribution by Elbatal(2011). The pdf of four parameter NMW,
BGE, BGL and EMW distributions are given in equation equation (38), (39),(40)
and (41), respectively, that is,

g
NMW

(x) =
(
αγxγ−1eαx

γ

+ λβxλ−1e−βx
λ
)
e−e

αxγ+e−βx
λ

, x > 0, (38)

g
BGE

(x) =
αλ

B(a, b)
e−λx

(
1− e−λx

)αa−1(
1−

(
1− e−λx

)α)b−1
, x > 0. (39)

g
BGL

(x) =
αλ2

B(a, b)(1 + λ)
(1 + x)e−λx

[
1− 1 + λ+ λx

1 + λ
e−λx

]aα−1
×
[
1−

(
1− 1 + λ+ λx

1 + λ
e−λx

)a]b−1
, x > 0, (40)

and
g
EMW

(x) = γ
[
δ + λθαxλ−1

]
e−(δx+(θxλ)

[
1− e−(δx+(θx)λ)

]δ−1
, x > 0. (41)

Plots of the fitted densities, the histogram of the data and probability plots
Chambers et al.(1983) are given in Figure 6 and Figure 7 for the two datasets con-
sidered in this section. For the probability plot, we plotted
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F
GELLLoG

(x(j); ĉ, α̂, λ̂, δ̂) against
j − 0.375

n+ 0.25
, j = 1, 2, · · · , n, where x(j) are the ordered

values of the observed data. The measures of closeness are given by the sum of
squares (SS)

SS =

n∑
j=1

[
F
GELLLoG

(x(j))−
(
j − 0.375

n+ 0.25

)]2
.

The goodness-of-fit statistics W ∗ and A∗, described by
Chen and Balakrishnan(1995) as well as Kolmogorov-Smirnov (KS) statistic,
its P-value and SS are also presented in the tables. These statistics can be used to
verify which distribution fits better to the data. In general, the smaller the values
of W ∗ and A∗, the better the fit.

7.1. Lifetime data

Gross and Clark(1975) presented the following data for lifetime data. The data are:
1.1,1.4,1.3,1.7,1.9,1.8,1.6,2.2,1.7,2.7,4.1,1.8,1.5,1.2,1.4,3,1.7,2.3,1.6,2.
Estimates of the parameters of GELLLoG distribution and its related sub-models
(standard error in parentheses), AIC, BIC, and the goodness-of-fit statistics W∗, A∗,
KS and its P-value as well as SS are given in Table 4. Plots of the fitted densities and
the histogram, observed probability vs predicted probability are given in Figure 6.

Table 4: Estimates of Models for Lifetime Data
Estimates Statistics

Model λ c α δ −2 log L AIC AICC BIC W ∗ A∗ KS P-value SS

GELLLoG 0.1243 5.1200 3.4885 2.0262 30.8287 38.8287 41.4954 42.8117 0.0262 0.1512 0.0960 0.9928 0.0216
( 1.6299) ( 6.8941) ( 18.2812) ( 7.8205)

GELLoG 0 1.1287 1.2996×10−04 1.0504 109.5000 115.4986 116.9986 118.4858 0.0623 0.3667 1.0000 2.2×10−16 6.6216
- ( 2.4417×10−01) ( 8.1022×10−05 ) ( 3.8729×10−03)

ELLLoG 2.3230×10−09 2.3964 0.5000 1 63.0817 69.0818 70.5818 72.0690 0.0548 0.3218 0.7462 4.241×10−10 3.9409
( 1.4863×10−01 ) ( 4.4268×10−01) (3.1192×10−01) -

LLLoG 4.7922×10−09 2.4917 1 1 65.6049 69.6049 70.3100 71.5964 0.0492 0.2878 0.5616 6.621×10−06 2.3313
(1.5407×10−01) (4.4792×10−01 ) - -

LLoG 0 2.4916 1 1 65.6049 67.6049 67.8271 68.6007 0.0492 0.2878 0.5616 6.6210×10−06 2.3313
- (0.4479) - -
α λ a b

BGE 28.4888 5.4032 28.9646 0.2951 30.8779 38.8779 41.5446 42.8609 0.0348 0.1958 0.1012 0.9865 0.0262
(215.8902) ( 3.7126) (217.1584) ( 0.2620)

α γ λ β

NMW 0.0090 3.4110 6.6101 0.0169 37.8087 406.7058 409.3725 410.6888 1.1163 5.6637 0.6348 1.992×10−07 1.9879
( 0.0163) ( 1.2816) ( 1.4907) ( 0.0156)

α θ a b

BGL 1.2026×10−01 2.9054×10−07 3.0161×10−01 1.0100×1001 162.3258 170.33 172.9967 174.313 0.0872 0.5162 0.4939 0.0001 1.5551
(1.2389×10−02) ( 4.2756×10−06) (1.1499×10−03) ( 3.5923×10−05 )

γ δ λ θ

EMW 3.6683×1001 2.2352 1.7001×1001 1.0000×10−04 32.5212 40.5212 43.1878 44.5041 0.0542 0.3184 0.1343 0.8633 0.0431
(2.5254×1001 ) (4.3602×10−01) ( 2.6643×10−13) ( 4.5297×10−08 )

The Likelihood ratio (LR) test statistic for testing H0: GELLoG against Ha: GEL-
LLoG, H0: LLLoG against Ha: GELLLoG and H0: ELLLoG against Ha: GELLLoG
are 78.6712 (p-value < 0.0001), 34.7761 (p-value < 0.0001) and 32.2529 (p-value
< 0.0001). We can conclude that there are significant differences between GELLoG
and GELLLoG distributions, LLLoG and GELLLoG distributions as well between
GELLLoG and ELLLoG distributions, respectively based on the LR tests at 5% level.
The values of AIC and BIC are smallest for the GELLLoG distribution, when com-
pared to the corresponding values for the non-nested BGE, NMW, BGL and EMW
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distributions. The values of the goodness-of-fit-statistics W∗, A∗, KS and its p-value
show that the GELLLoG distribution is the “best” fit for the lifetime data.

Fig. 6: Fitted Densities and Probability Plots of the Lifetime Data
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7.2. Repair lifetimes of an airborne transceiver

These data correspond to maintenance on active repair times (in hours) for an
airborne communication transceiver with size n=46 from Leiva et al.(2009) and
Chhikara and Folks(1977). These data are:
0.2,0.3,0.5,0.5,0.5,0.5,0.6,0.6,0.7,0.7,0.7,0.8,0.8,1.0,1.0,1.0,1.0,1.1,1.3,1.5,1.5,
1.5,
1.5,2.0,2.0,2.2,2.5,2.7,3.0,3.0,3.3,3.3,4.0,4.0,4.5,4.7,5.0,5.4,5.4,7.0,7.5,
8.8,9.0,10.3,
22.0,24.5.
Estimates of the parameters of GELLLoG distribution and its related sub-models
(standard error in parentheses), AIC, BIC, W∗, A∗ , KS and its P-value as well as
SS are given in Table 5. Plots of the fitted densities and the histogram, observed
probability vs predicted probability are given in Figure 7.

Table 5: Estimates of Models for repair lifetimes of an airborne transceiver Data
Estimates Statistics

Model λ c α δ −2 log L AIC AICC BIC W ∗ A∗ KS P-value SS

GELLLoG 0.0909 1.2382 1.8733 1.0064 199.7542 207.7542 208.7298 215.0688 0.0489 0.3168 0.0929 0.8216 0.0546
( 0.0754 ) ( 0.3801 ) ( 3.2566 ) ( 1.3790 )

GELLoG 0 1.1267 1.4823×10−04 1.0504×1001 266.6504 272.6513 273.2227 278.1372 0.0676 0.4027 1.0000 2.2×10−16 15.2901
- ( 1.5154×10−01) (6.2240×10−05) ( 3.1145×10−03)

ELLLoG 0.0454 1.3410 0.5000 1 202.0737 208.0737 209.3084 214.2229 0.0593 0.3655 0.4893 5.419×10−10 4.5084
( 0.0576) ( 0.1853) ( 0.1417 ) -

LLLoG 0.0525 1.3205 1 1 214.5014 218.5014 218.7805 222.1587 0.0564 0.3441 0.2435 0.0085 1.1386
( 0.0591 ) ( 0.1826) - -

LLoG 0 1.3643 1 1 214.9587 216.9587 217.0496 218.7873 0.0624 0.3725 0.2362 0.0117 1.1276
- (0.1670) - -
α λ a b

BGE 10.9759 1.2799 0.1848 0.1855 201.8082 209.8083 210.7839 217.1229 0.0563 0.4558 0.1109 0.6228 0.0890
(20.9289) ( 0.7340 ) ( 0.3193 ) ( 0.0620 )

α γ λ β

NMW 0.1280 0.3343 1.2957 0.1810 237.2661 245.2661 246.2417 252.5807 0.1341 0.8364 0.2340 0.0129 0.6827
(0.0680) (0.2015) (0.1966) (0.0619)

α θ a b

BGL 1.1793×10−01 1.7823×10−06 3.0140×10−01 1.0100×1001 386.7372 394.7331 395.7087 402.0476 0.0769 0.4980 0.5073 1.0370×10−10 3.3521
(7.3103×10−03) (2.8513×10−06) (4.6377×10−04) (2.5191×10−05 )

γ δ λ θ

EMW 9.5828×10−01 2.6937×10−01 1.7001×1001 1.0000×10−04 209.9658 217.9658 218.9414 225.2804 0.1441 1.0004 0.1519 0.2385 0.1889
(1.8975×10−01) (5.4358×10−02) (5.0648×10−19 ) ( 8.6130×10−14 )

The LR test statistic for testing H0: GELLoG against Ha: GELLLoG, H0: LLLoG
against Ha: GELLLoG and H0: ELLLoG against Ha: GELLLoG are 66.8962 (p-value
< 0.00001), 14.2598 (p-value < 0.000801) and 2.3195 (p-value=0.1277). We can con-
clude that are significant differences between GELLoG and GELLLoG distributions,
as well as between LLLoG and GELLLoG distributions, respectively based on the
LR tests. There is no significant difference between GELLLoG and ELLLoG distri-
butions based on the LR test. The GELLLoG distribution is significantly better than
the sub-models considered above. The values of the statistics: AIC, AICC, and BIC
are smallest for the GELLLoG distribution. Also, the goodness-of-fit statistics W ∗
and A∗ are the smallest and definitely points to the GELLLoG distribution as the
“best”fit for the Repair lifetimes of an airborne transceiver data when compared
to the corresponding values for the sub-models. The goodness-of-fit statistics W ∗
and A∗ are also better for the GELLLoG distribution when compared to the values
for the non-nested BGE, MMW, BGL and EMW distributions. Thus, there is indeed
convincing evidence that the GELLLoG distribution is the “best” fit for the repair
lifetimes of an airborne transceiver data.
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Fig. 7: Fitted Densities and Probability Plots of the Repair Lifetimes of an Airborne
Transceiver Data

8. Concluding Remarks

A new generalized distribution called the gamma exponentiated Lindley log-logistic
(GELLLoG) distribution is presented. The GELLLoG distribution has several new
and known distributions as special cases or sub-models. The density of this new
distribution can be expressed as a linear combination of ELLLoG density func-
tions. The GELLLoG distribution possesses hazard function with flexible behav-
ior. We also obtain closed form expressions for the moments, mean and median
deviations, distribution of order statistics and entropy. Maximum likelihood esti-
mation technique is used to estimate the model parameters. The performance of
the GELLLoG distribution was examined by conducting Monte Carlo simulations
for different sizes. Finally, the GELLLoG distribution is fitted to real data sets to
illustrate the applicability and usefulness of the new generalized distribution.
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9. Appendix A

Elements of the score vector are given by

∂`n
∂c

= (δ − 1)

n∑
i=1

(
1−

[
1− 1+λ+λxi

1+λ
e−λxi

(1+xci )

]α)−1
ln

(
1−

[
1− 1+λ+λxi

1+λ
e−λxi
(1+xci )

]α)α[1− 1 + λ+ λxi
1 + λ

e−λxi

(1 + xci )

]α−1

×
[
(1 + λ+ λxi)e

−λxi

1 + λ
+

xci lnxi
(1 + xci )

2

]
+ (α− 1)

n∑
i=1

[
(1+λ+λxi)e

−λxi

1+λ +
xci ln xi
(1+xci )

2

]
[
1− 1+λ+λxi

1+λ
e−λxi
(1+xci )

]

−
n∑
i=1

xci lnxi
(1 + xci )

+

n∑
i=1

(1+λ+λxi)
(1+xci )

2

(
(xc−1i + cxc−1i lnxi)(1 + xci )− cx

c−1
i xci lnxi

)
[
λ2(1 + xi) +

(1+λ+λxi)cx
c−1
i

(1+xci )

] ,

∂`n
∂α

= (δ − 1)

n∑
i=1

(
1−

[
1− 1+λ+λxi

1+λ
e−λxi

(1+xci )

]α)−1
ln

(
1−

[
1− 1+λ+λxi

1+λ
e−λxi
(1+xci )

]α)[1− 1 + λ+ λxi
1 + λ

e−λxi

(1 + xci )

]α

× ln

[
1− 1 + λ+ λxi

1 + λ

e−λxi

(1 + xci )

]
+
n

α
+

n∑
i=1

ln

[
1− 1 + λ+ λxi

1 + λ

e−λxi

(1 + xci )

]
,

∂`n
∂λ

= (δ − 1)

n∑
i=1

(
1−

[
1− 1+λ+λxi

1+λ
e−λxi

(1+xci )

]α)−1
ln

(
1−

[
1− 1+λ+λxi

1+λ
e−λxi
(1+xci )

]α)α[1− 1 + λ+ λxi
1 + λ

e−λxi

(1 + xci )

]α−1

× −e−λxi
(1 + xci )(1 + λ)

(
(1 + xi)(1 + λ)− (1 + λ+ λxi)

1 + λ
+ (1 + λ+ λxi)(xi)

)

+ (α− 1)

n∑
i=1

e−λxi

(1+xci )

[
(1+xi)(1+λ)−(1+λ+λxi)

(1+λ)2 + (1+λ+λxi)xi
1+λ

]
[
1− 1+λ+λxi

1+λ
e−λxi
(1+xci )

] − n

1 + λ
−

n∑
i=1

xi

+

n∑
i=1

2λxi +
cxc−1
i (1+xi)

(1+xci )[
λ2(1 + xi) +

(1+λ+λxi)cx
c−1
i

(1+xci )

] ,
and
∂`n
∂δ

= −nΓ
′(δ)

Γ (δ)
+

n∑
i=1

ln

[
− ln

(
1−

[
1− 1 + λ+ λxi

1 + λ

e−λxi

(1 + xci )

]α)]
.
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