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Résumeé. Dans ce papier, nous considérons une analyse Bayésienne d’'un change-
ment dans la moyenne des échantillons gaussiens indépendants en présence d’'une
seule valeur aberrante. Tous les parameétres sont supposés inconnus. En con-
sidérant une distribution a priori non informative pour les parameétres, un test
de signification bayésien inconditionnel pour tester le changement est proposé.
En utilisant 'algorithme de I'échantillonneur de Gibbs, une étude numérique est
réalisée pour examiner l'effet de la présence d'une observation contaminée sur la
performance du test de signification bayésien.

1. Introduction and preliminaries

Suppose we have the observations (z1,- - ,z,) based on the following change point
model :
Xi:¢0+€i if z':1,2,~--,m (1)
Xi=p1+¢e ifi=m+1,---,n

where the ¢; are normal random independent errors with mean zero and unknown
constant variance o2. ¢y and ¢, are real unknown constants which represent the
means of the variables X; before and after the change-point m. n being the size of
the sample.

The change point problems have been an active research area with a variety of
applications. A change point, which is generally the effect of an external event on
the phenomenon of interest, may be represented by a change in the structure of
the model or simply by a change of the value of some parameters. Since Page
(1954, 1955) who developed a cumulative sum (Cusum) test to detect a location
change, considerable attention has been given to this problem with a variety of
application and in a variety of settings, For a review, see Csorgo and Horvath
(1997, 1987), Brodsky and Darkhovsky (1993) and Liu et al. (2008), Jandhyala et
al. (2013).

In the Bayesian context, the problem of detecting a change was studied by many
authors. We can cite Chernoff and Zacks (1964), Kander and Zacks (1966),
whose aim was to detect the change in the mean of normal random variables.
Kim (1991), proposed a Bayesian significance test for stationarity of a regression
equation using the highest posterior density credible set. From a Monte Carlo
simulation study, he showed that the Bayesian significance test has stronger
power than the Cusum and the Cusum of squares tests suggested by Brown et al.
(1975).

Slama (2014a) examined the effect of correlation on the performance of the
Bayesian significance test derived under the assumption of no correlation. By
numerical studies, he showed that the Bayesian significance test based on the
HPD region is sensitive to the correlation in the data.Recently, Slama and Saggou
(2017) considered a Bayesian analysis of a possible change in the parameters
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of autoregressive time series of known order p, AR(p). For a review of important
results in parametric change point(s) analysis, we can see the monograph of Chen
et al. (2011) and the references contained therein.

In many applications, however, the observations can be contaminated by the
presence of outliers; i.e. observations that deviate significantly from the majority
of observations. This may due to errors in the collection, measurement and
processing of the data, or to some unexpected event influencing the phenomenon
under study. Outliers may have a significant impact on the results of standard
methodology for time series analysis, therefore it is important to detect them,
estimate their effects and undertake the appropriate corrective actions. For
example, the impact of outliers on parameter estimation has been studied by Pena
(1990), on autoregressive moving-average (ARMA) identification by Deutsch et al.
(1990), and the effects on forecasts are addressed by Ledolter (1989) and Chen
and Liu (1993). For more details see Battaglia et al. (2005) and the references
contained therein.

Also, the Bayesian analysis of models in the presence of outliers has been consid-
ered by several authors. Verdinelli and Wasserman (1991) considered the Bayesian
analysis of outlier models, they showed that the Gibbs sampler brings considerable
conceptual and computational simplicity to the problem of calculating posterior
marginals. Nasiri (2010) proposed the maximum likelihood estimator and the
Bayes estimators of the parameters of the generalized exponential distribution
in the presence of outliers. The performances of these estimators have been
compared to each other, and they concluded that the Bayes estimators are better
than the maximum likelihood estimator. Belkacem and Fellag (2012) studied the
impact of an outlier on the performance of the Bayesian estimation of the change
point in independent gaussian samples. Slama (2014b) studied the impact of an
outlier on the performance of the Bayesian significance test based on the HPD
regions sets. The position and the magnitude of the contamination are assumed
to be known. The simulation study showed that the Bayesian significance test
based on the HPD region is insensitive to the presence of a single outlier. Recently,
Gupta and Singh (2017) considered the classical and Bayesian estimation of
the parameters of Weibull distribution in presence of outlier. A simulation study
has been conducted to compare the performance of the classical and Bayesian
methods of estimation.

In this paper, we extend the work in Slama (2014b) to the cases where the position
and the magnitude of the contamination are unknown, and our aim is to study the
effects of the presence of an additive outlier on the performance of the Bayesian
significance test of change in the mean of independent gaussian samples. The
posterior estimates of the change point, the position and the magnitude of the
contamination, and the others parameters of the model are given. By extensive
simulations, the posterior estimates of parameters are determined. As well, we
compare the rejection rates of the null using the unconditional test with those
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determined by the test taken under the assumption of non contamination.

The rest of the paper is organized as follows. Section 2 presents the models
assumed in the present paper. In section 3 we present the Bayesian analysis
of the parameters of the model and the Bayesian significance test of change. A
simulations results are given in section 4. Section 5 is our conclusion.

Assume that there exists a position k, k € {1,2,--- ,n}, such that (y;,---,y,) are
possible observations from the model,

Yi= X +¢& 2)
Y= X, Vie{l,2,---,n} with i#k,

where the constant £ is the magnitude of the contamination which occurs at time k.

We suppose that the contaminations occurs before the change point m, i.e., k €

{1,--- ,m}. The model (2) is written as follows :
Y= X; = do + ¢ i=1,---,k—1 and i=k+1,---,m
V=X +8{=0¢o+{+ek (3)
Yi=X;,=¢1+¢; i=m+1,---, mn,

where m S {1,"',771* 1}’ k e {17"‘7m}’ ¢07¢1 € R& ( ¢0 7& ¢1)9 5 S R’ and
gi ~ N(0,0?%), (0 > 0), with m, k, £, ¢g, ¢1 and o are unknown parameters.

The likelihood function based on the observations y = (y1,y2, - ,¥n) is then,
. 1 m n
Wy |6) oc o "exp — 2 D Wi—d0) + Wk —(do+E)°+ D wi—¢)?| . @
i=1 1=m-+1

i#k

2. Bayesian analysis

One has a parameter set 0 = (m, k, &, ¢o, ¢1,7) where r = 1/02. Since prior knowl-

edge of ' = (¢, ¢1,&,r) is often vague or diffuse, we employ a diffuse prior for ¢'.

The parameters (k,m), ¢o,¢1,£ and r are assumed independent. we suppose that

w(k,m)x —, ke {l,--- ,m}, me {1,--- ,n—1}. The prior distribution of 6 is, there-
m

fore

1

() x ﬂ(k,m).; = , (5)

S| =

1
—
Note that the functional forms #(.) and =(. | .) represent a prior and a posterior

distribution, respectively.
The posterior distribution of 4, obtained by combination of (4) and (5) is
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n r m n
70 y) o< m~trE exp 3 ;(yz —$0)* + (yk — (do + &))* + if;-l(yi —$1)*| ¢ (6)

i#k

We build an inference about testing the hypothesis, that is, to test whether or
not a change point occurs in the mean of in independent gaussian samples in
the presence of a single outlier, and we will study the effect of the presence of an
outlier on the performance of the test.

The null hypothesis H, that there is no change in the parameters of model (1), is

Hoy:0=¢1—¢po=0 against Hy:0=¢1 —¢g#0

The proposed test is based on the posterior distribution of the shift 6 = ¢; — ¢¢. The
hypothesis meaning "non change” is equivalent to H), : m = n and H; is equivalent
to H : m # n.

The following theorem gives the posterior distribution of the magnitude of the shift
in the mean §, the magnitude of the contamination &, the position of the contami-
nation & and the change point m.

Theorem 1.
(1) Given m, k, £ and ¢q, the conditional posterior distribution of ¢ is:

n
2

(n—m) (5 5(m. 00))

(8 | m,k,& do,y) oc q 1+ (n —1)S3(m, k,&, ¢o) 7

(7)

where )
5(m, o) = 2immt1(Yi — gbo)’
n—m
= SS(m’ k? ga ¢0)
Sl2(m7 k7 57 ¢0) = W
and
SS(m,k.& d0) =Y (i — o) + (yk — (do +£))* — i1 (Wi — 0)] | 8

y n—m
=1
i#tk

which is the Student t distribution with location parameter §(m,¢q), precision
n—m

———————, and (n — 1) degrees of freedom. Equivalently, the quantit
(n—m)¥ (3= 3(m, o))

Sl(m7 ka§7 ¢0)

t(8) = C)
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is distributed a posteriori as a conditional standard Student t distribution with
(n — 1) degrees of freedom given m and ¢y.

(2) Given m, k, ¢ and ¢, the conditional posterior distribution of £ is:

n
2

(¢ &ow)’

7'('(5 |m7ka¢076ay) o8 1+ (n—l)Sg(m,k,%,é) ) (10)
where, S By 5
E((bo) =Yk — ¢07 Sg(m7 kv ¢076) = %
and,
SSs(m, k, 0,6) = Y (v — d0)> + Y (i — 6 — ¢0)°, (11)
i=1 m+1

i#k
~

which is the Student t distribution with location parameter &(¢g), precision
1

————,and (n—1) d dom.
) and (n — 1) degrees of freedom

(3) Given m, £ and ¢y, the conditional posterior distribution of k is:

_n—1

ﬂ—(k | m7§7¢01y) X Ss(m7k7§a¢0) 2 (12)

where SS(m, k, &, ¢o) is given in (8).

(4) Given k, £, and ¢, the conditional posterior distribution of m is:

n—1

7T(m | k7£a¢07y) X m_l(n - m)_%SS(m,k,f,@J)_ 2,

where SS(m, k, &, ¢o) is given in 8.

Proof of Theorem 1. By transforming the parameter set © = (m, k, &, ¢g, ¢1,7) into
O = (m, k,&, do,0), we can form the posterior distribution of ®; that is,

ﬂ—(q) |y) = frﬁ(m’ka€a¢076+¢0ar/y)dr B
oc m L[ (4 = 60)% + (g = (G0 + €)% + Ly (4 — 9 — 60
o< mt Z?ii (yi — ¢0)® + (yr — (d0 + €))% — [Zna s (13)

w3

n—m

—_n
2

+ (n—m) (5 —3(m, qso)ﬂ

We conclude the proof of the following points :
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(i) By application of Bayes theorem, the posterior conditional distribution of ¢ is
obtained as given in (7).

(ii) By integration with respect of J, we obtained the joint posterior distribution of
m, k, £ and ¢q:

w(m, k&, o | y) ocm™ (n—m)~ESS(m, k, &, o) T (14)
where SS(m, k, £, ¢o) is given in (8).

(iii) The conditional posterior distribution of £ and k are obtained by the successive
application of Bayes’ theorem on posterior distribution given in (13).

(iv) By application of Bayes theorem, the posterior conditional distribution of m is

w(m | k€, do,) o m™(n —m) “ESS(m, €, 6o)~F
where SS(m, k, &, ¢o) is given in (8). O

The following Lemma gives the posterior distribution of the mean before the change
point ¢g.

Lemma 1.
(1) Given m, k, £ and ¢, the conditional posterior distribution of ¢ is:

n(qso - g&;(m,k,f,d))z

m(¢o | m, k, & 0,y) o ¢ 14 (n —1)SZ(m, k, €, 6) ’

(15)

where,

- b 7k7 76

d)o(ma k7£35) = %7
and

2 _ 1 . bQ(makvgv(;)
SQ(mvkagv(s)* (’I’L—l) a(m,k,§,5) n .
with,
a(m, k., ) Zyl + ="+ ) (i —
Hék m—+1

and

b(m, k,&,08) = Zyz (s =)+ > (v —

m+1
z#k

Thus is the Student t distribution with location parameter %(m, k, &, 0), with precision

S -l (1 1) degrees o reedom
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Proof. The conditional posterior distributions in (15) is obtained by application of
Bayes’ theorem on posterior distribution given in (13). O

The unconditional posterior distributions of ¢(9) is,

i) 19 =3 % /5 /¢ ) | €0 ) (00 | 6.0

x (& | m,k,y)m(k | m,y)m(m | y)

(16)

One defines the highest posterior density credible sets of ¢(d). The credible set will
be used to define the unconditional p-value and therefore an unconditional test.

Given m, k, £ and ¢, the (1 — «)-credible set for ¢(J) is defined as:

Cs = {t(0)/[t (9] <taj2 (n— 1)},

where 2 (n — 1)) is the (1 — a/2)th quantile of a ¢-distribution with (n — 1) degrees
of freedom. Hence, given m, k, £ and ¢, the decision rule for Hy, is to reject if
t(0) € Cs, where Cj is the complement of Cs.

The unconditional p-value of Hj, therefore, is calculated from (16) to yield:

Peo, =2 XY S (Lm0

x7(go | m, k,&,y)ddo) 7€ | m,k,y)de] (k| moy)m(m | y), 07
= 2B, E,EcE,y, [1 — Tro1 (1 £(0) \)]
where 7,,_; is the cumulative density function of the standard Student ¢ distribu-
tion with (n — 1) degrees of freedom, and the expectations E,,, Ei, E; and E,;, are
taken with respect to m, k, £ and ¢g.

Our test, therefore, rejects Hy unconditionally, if P5_g), falls below «, (0 < a < 1).
Which define the unconditional Bayesian significance test (UncBST) of Hj.

Given &, the conditional p-value of Hy, is:

P =22 X [( [ [1Toa 010 D]t | b))

x (k| m,y)m(m | y),
= 2F,, E,Ey, [1 —Tl1 (| £(0) \)]

(18)

and so, Hy will be rejected conditionally to ¢, if Ps—g¢, < a. Thus, define the
Bayesian significance test of H, conditionally on ¢ (ConBST).
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The quantities given in (17) and (18) will be evaluated numerically by the Gibbs
sampler algorithm by using the conditional posterior distributions given in in The-
orem 1) and Lemma 1). The Gibbs sampler is a Markovian updating scheme en-
abling one to obtain samples from a joint distribution via iterated sampling from
full conditional distributions. Detailed investigation of the Gibbs sampler applied
to general Bayesian calculation is given by Gelfand and Hills (1990) and Gelfand
and Smith (1990).

Remark 1. The contamination can occur after the change-point m. In this case,
the same methodology than above can be adapted to determine the unconditional
p-value of Hy.

The model is written as follows:

}/'L:Xl:(b0+€l i:1,~~~,m
Ye=Xp+{=01+&{+ex (19)
Y;:Xlz(bl—f—gz z:m—l—l,,k—l
t=k+1,---,n.
where m, k, £, ¢g, 1 and ¢ are unknown parameters.
The prior distribution of 8 = (m, k, &, ¢o, ¢1,7) is,
1 1 1
0 k,m).— = — 20
7(0) o< m(kym) - = ——., (20
Then, the posterior distribution for the parameter 6 is,
B o r m n
w0 y) o (n—m)"lrmF expq— D wi—d0) + (k= (1 + )+ D (i~ ¢1)*| 21)
i=1 i=m+41

i#k

3. Simulation study:

Simulation has been used to study the effect of contaminated observations by
a single outlier on the Bayesian significance test based on the highest posterior
density credible set.

We simulated a sample from the model (2) with n = 200, m = 120, o = 1, k = 80 and
for different values of ¢y, ¢; and £. The Simulated observations are represented in
the following figure (1) and (2).

From these observations, by the application of the Gibbs sampler algorithm with
2000 replicates, we approximate the unconditional p-values for the hypothesis
Hy : 6 = 0; Ps—o|y, the conditional p-values on ¢ for Hy : 6 = 0; Ps—g|¢,,, the posterier
density function of m, the posterior distribution of 4 and of £, and the conditional
posterior distribtion of k£ given m. The results are given in tables (1) - (6) and in
figures (3) - (4) .

Journal home page: http:/ /www.jafristat.net, www.projecteuclid.org/euclid.as,
wwuw.agjol.info/ afst



A. Slama and H. Fellag, Afrika Statistika, Vol. 13 (3), 2018, 1779 —-1794. A Bayesian
analysis of a change in the mean of independent normal sequence with contaminated
observation. 1788

L L L L L L L L L
[} Z0 A0 [={u] 20 100 120 140 180 180 Z0o0

Fig. 1. A Simulated observations with ¢o = 0.5, ¢1 = 1.5, k =80 and ¢ = 0

The figures (3) - (4) illustrate the posterior density function of m with ¢ = 3 and
¢ = 0 respectively. We can readily see from these figures that the posterior mode is
the true value of m. This goes in the same direction as the result of Belkacem and
Fellag (2012), who have found that, if the sample size is high, the presence of an
outlier has not a significant impact on the Bayesian procedure of estimation of the
change-point in independent gaussian samples.

' ' L ' L L ' L '
a 20 A0 &0 a0 100 120 140 160 180 Z00

Fig. 2. A Simulated observations with ¢y = 0.5, ¢1 = 1.5, k = 80 and £ = 3

The values of Ps_, and of Ps_y¢—¢, in the table (1) show that, for § = 0.5, the test
rejects unconditionally and conditionally on ¢ = 0 the hypothesis H, at significance
level @ = 0,01, for all values of £, and for § = 0,25, the test rejects unconditionally
and conditionally H, at significance level a = 0, 10, for all values of . For § =
0, the hypothesis H;, can not be rejected at 10%, for all values of £. Recall that
the mean is not changed. Likewise, It is observed that the p-values taken under
the assumption of non contamination; Ps_g¢—o,,, are significantly the same that
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the unconditional p-values; Ps_,, for all values of {. It means that, the Bayesian
significance test based on the HPD regions for detecting a change in the mean of
independent Gaussian samples is insensitive to the presence of single outlier (see
table (1) ).

§=1-05=05 6=1-075=25 6=1-1=0

Ps—oly 0.0016 0.0710 0.1460

£€=0
Ps—oj¢—o.y 0.0011 0.0755 0.1472
Ps—oly 0.0052 0.0733 0.1322

£=2
Ps—oje—o.y 0.0054 0.0655 0.1524
Ps—oly 0.0008 0.0831 0.1414

£=4
Ps—oj¢—o.y 0.0009 0.0948 0.1426
Ps—ojy 0.0215 0.0813 0.1377

£=8
Ps—oj¢=o.y 0.0220 0.0819 0.1347

Table 1. The unconditional p-values for Hy, and conditional p-values on ¢ = 0 for
different values of £ and 4.

Using the same generated series, various simulations were run for various values
of ¢ and §. Tables (2) - (4) illustrates the posterior estimates of parameters, m, k, £
and é6.

The posterior mean and median of £ and ¢ estimate nearly well the true value of
k and 0, while the posterior mean of m and ¢ presents some bias, (see Tables (2) -
(3) ). But, for a large shift in the mean (§ = 3), the posterior mean of the change-
point m is equal to the true value of m (see table (3)). Note also that, all the 95%
highest posterior density (HPD) intervals of the parameters contain the true value
considered. Table (4) shows that, the 95% highest posterior density (HPD) interval of
the parameter k; the position of contamination; contains nearly all possible values
of k. Notice that the magnitude of the contamination ¢ is equal to zero.
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Parameters True values Median Mean(SD) 2.5% 97,5%
m 120 120 119.712(1.6829) 116 122
k 80 80* 80.088"(7.6457*) 71" 103*
13 3 3.9171 3.8086(1.3765) 0.8079 6.1334
1) 2 2.0261 2.0306(0.1447) 1.7376 2.3237

Table 2. Posterior estimates of parameters m, k, £ and é when m = 120, k = 80, £ = 3

and § = 2.5 — 0.5 = 2. (The values with star indication are calculated conditionally
to m=120).

Parameters True values Median Mean(SD) 2.5% 97.,5%
m 120 120 120.259(0.6192) 119 121
k 80 80* 79.947(6.5820™) 71.75* 80"
£ 3 3.9558 3.8110(1.4219) -0.0656 5.9345
1 3 3.0204 3.0241(0.1430) 2.7493 3.3087

Table 3. Posterior estimates of parameters m, k, £ and § when m = 120, £k =80, £ = 3
and § = 3.5 — 0.5 = 3. (The values with star indication are calculated conditionally
to m=120)

Parameters True values Median Mean(SD) 2.5% 97,5%
m 120 120 119.736(1.6263) 116.75 122
k 80 1 73.256*(30.1024") 9.75" 118"
£ 0 -1.3581 -0.9293(2.4308) -4.7639 3.7308
1) 2 2.0018 2.0049(0.1402) 1.7368 2.3018

Table 4. Posterior estimates of parameters m, k, £ and § when m = 120, k =80, =0

and 0 = 2.5 — 0.5 = 2. (The values with star indication are calculated conditionally
to m=120)

To illustrate the effect of contamination of the observation on the Bayesian signif-
icance test of change, we simulated 100 samples from the contaminated model (2)
with n = 200, m = 120, 6 = 0.5, 0 = 1, k = 80 and for different values of &, and
we computed the rejection rates of Hy by the Bayesian significance test condition-
ally on ¢ = 0 (ConBST) and the unconditional Bayesian significance test of change
(UncBST) at a% significance levels. We consider three values of «, 0.01, 0.05 and
0.10. The results are given in the Tables (5), (6) and (7).
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Fig. 3. Posterior density functi f
g osterior en51y unctuons or m with m — 120, b — 80, 5 — 9 andf -0

with m =120, k=80, § =2 and £ =3

13 0 2 4 8 10
UncBST «=0.01 069 0,64 0,52 0,14 0,06
a=005 097 088 087 050 0,30
=010 1,00 098 1,00 0,87 0,76
«>010 0,00 0,02 0,00 0,13 0,24
ConBST «=0.01 0,72 0,61 0,41 0,07 0,02
a=005 094 088 080 032 0,20
=010 1,00 1,00 0,9 0,74 0,64
«a>010 0,00 0,00 0,04 0,26 0,36

Table 5. The rejection rates of Hy by the conditionaly on ¢ = 0 and inconditionaly
Bayesian significance test at a% level with n = 200. ConBST: Bayesian significance
test conditionaly on ¢ = 0, UncBST: Unconditional Bayesian significance test.

Tables (5)-(7) show that, for all values of n (n = 200, n = 250 and n = 300),
the rejection rates for Hy, at a% significance levels, are substantially the same
for the two testing procedures considered (Unconditional Bayesian significance
test(UncBST) and conditional Bayesian significance test (ConBST) given £ = 0 ) for
all values of the contamination £. For n = 200, the rejection rates at 10% level are
more than 64% for the tow testing procedure and for all values of £. For n = 250,
the rejection rates at 10% level are more than 86% for the tow testing procedure
and for all values of £. Finaly, For n = 300, the rejection rates at 10% level are more
than 97% for the tow testing procedure and for all values of ¢.

Thereby, take a large enough sample size has a positive effect on the Bayesian
significance test of a change in the mean of a sequence of an independent normal
random variables with contaminated observation, and makes the test insensitive
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& 0] 2 4 8 10
UncBST =001 0,78 0,79 0,69 0,04 0,03
a=0.05 099 094 096 0,34 0,20
=010 1,00 1,00 1,00 0,94 0,88
a>0.10 0,00 0,00 0,00 0,06 0,12
ConBST «=0.01 081 0,76 0,63 0,00 0,00
a=005 093 094 090 025 0,14
a=010 099 1,00 099 092 0,86
«a>010 0,01 0,00 0,01 0,08 0,14

Table 6. The rejection rates of H, by the conditionaly on ¢ = 0 and inconditionaly
Bayesian significance test at a% level with n = 250. ConBST: Bayesian significance
test conditionaly on ¢ = 0, UncBST: Unconditional Bayesian significance test.

13 0 2 4 8 10
UncBST «=0.01 0,18 0,11 0,07 0,00 0,00
a=005 099 100 093 055 0,29
a=010 1,00 1,00 1,001 1,00 0,98
«a>010 0,00 0,00 0,00 0,00 0,02
ConBST «=0.01 0,18 0,19 0,05 0,00 0,00
a=005 098 093 095 0,49 0,29
a=010 1,00 1,00 1,00 0,99 0,97
«>010 0,00 0,00 0,00 0,01 0,03

Table 7. The rejection rates of Hy by the conditionaly on ¢ = 0 and inconditionaly
Bayesian significance test at a% level with n = 300. ConBST: Bayesian significance
test conditionaly on ¢ = 0, UncBST: Unconditional Bayesian significance test.

to the presence of a single outlier. However, the test becomes sensitive when the
sample size becomes small.

4. Concluding remarks

This paper presented a Bayesian analysis of a change in the mean of independent
gaussian samples in the presence of a single outlier under consideration of non-
informative prior distribution of the parameters. All parameters are considered
unknown. The use of non-informative prior distributions is motivated by the fact
that, in general, the prior information is vague or unavailable. We have obtained
the posterior estimates of the parameters and presented a Bayesian significance
test of change in the mean. By numerical studies using the Gibbs sampler
algorithm to obtain the required Bayesian estimations, we have shown that, with
sufficiently large enough sample sizes, the Bayesian significance test based on
the calculation of the p-values for a change in the mean of independent gaussian
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samples is insensitive to the presence of a single outlier. On the other hand, a
study of the procedure robustness can be conducted by considering other prior
distributions. For example, one may consider a normal distribution, conjugate
prior distributions, or even a prior distribution where the parameters are not
independent. Future research may be concerned with extension to other outlier
types and to a wider class of gaussian models with change in the variance.

Acknowledgements. The authors would like to thank the Editor-in-Chief and the
anonymous referees for their careful reading and suggestions that led to a sub-
stantial improvement of the presentation of the paper.
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