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Abstract. In this paper, we introduce a new distribution named as the Pseudo Lindley
Distribution (PsLD) as a generalization of the Lindley distribution (LD). A full and detailed
description are provided in terms of moments, cumulates, characteristic function, failure, rate
function, stochastic ordering, distributions of sums, and parameters estimation. Simulations
studies and data driven applications are also reported.

Résumé. Dans cet article, nous introduisons une nouvelle distribution de probability
dénommée Pseudo-Lindely-Distribution (PsLD) comme une géné- ralisation de celle de
Lindley (LD). Une description complète s’en suit, par rapport aux moments, à la fonc-
tion caractéristique, à la function de répartition et de survie, aux ordres stochastiques au
sein de la famille. De plus l’estimation des paramètres par la méthode des moments et du
maximum de vraisemblance est abordée. Une partie réservée aux simulations et à des ap-
plications sur des données réelles montrent la souplesse de cette loi pour expliquer certaines
données de survie par rapport à la distribution de Lindley et certaines de ces généralisations.

Key words: Lindley distribution; Exponential distribution; Gamma distribution; Stochastic
ordering; Maximum-likelihood estimation.
AMS 2010 Mathematics Subject Classification : 60E05; 62H20.

1. Introduction

We are concerned with a two-parameters generalization of the one-parameter Lindley dis-
tribution (Lindley , 1958) defined below by its probability density function, depending on
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the parameter θ > 0,

f(x; θ) =

 θ2(1 + x)e−θx

1 + θ
x > 0

0, otherwise
(1)

This distribution has attracted the interest of many researchers and has been generalized
several times by various authors. First, Sankaran (1970) used (1) when the parameter fol-
lows a Poison Law to derive their discrete Poisson-Lindley Distribution (PLD) with density
function

fPLD(x; θ) =
θ2(x+ θ + 2)e−θx

(1 + θ)x
, x = 0, 1, ...

where θ > 0 is a positive parameter. Recently, Asgharzadeh et al. (2013), Ghitany et al.
(2008a) and Ghitany et al. (2008b) introduced new distributions bounded to 1, called
Zero-truncated poisson-Lindley and Pareto Poisson-Lindley distributions. Also, Nedjar and
Zeghdoudi (2016) and Zeghdoudi and Nedjar (2016) introduced a new distribution, named
gamma-Lindley distribution, based on mixtures of gamma (2, θ) and one-parameter Lindley
distributions.

Since the Lindsley distribution and its derived form we just described depend on one param-
eter, they may lack of flexibility in statistical modelling of different types of lifetime data.
This motivated us to find out generalizations of more parameters that are easily handled.
Yet Zakerzadah and Dolati (2010) introduced a generalization of with three parameters. But
it happens that their distribution is difficult to use and is not as flexible as one can whish.

The idea of this paper is to use a mixture of ordinary exponential random variables (rv ’s) and
Gamma(2, θ) ones. The found distribution is characterized through a number of properties
concerning its characteristics and parameters : probability density function (pdf ), cumulative
distribution (cdf ), survival and hazard rate functions, moment generating function (mgf ),
mean, variance and stochastic orderings. Also relevant plots are given as illustrations.

Moment estimates are also discussed and statistical applications treating goodness of fit are
provided.

The paper is organized as follows. In Section 2, we introduce a generalization of the Lindley
distribution, that we name as the Pseudo-Lindley distribution (PsLD) and give immediate
properties as the mode. Section 3 is devoted to the study of survival and the hazard func-
tions. In Section 4 we focus on the moments including skewness and kirtosis and stochastic
ordering. In Section 5, we are interested in parameters estimation using both the maximum
likelyhood and the moment method. In this last section, simulation studies are reported and
as well, are provided datadriven applications allowing comparisons between our new law
with the original Lindley law and with others of it generalizations. We finish the paper with
a conclusive section.

2. The Pseudo-Lindley distributions and immediate properties

In this section, we give the pseudo lindley distribution and study its properties. Let Y1 ∼
Exp(θ) and Y2 ∼ Γ(2, θ) be two independent random variables. For β ≥ 1, we consider the
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mixture random variable variable X = Y1 and X = Y2 with probability (β − 1)/β and 1/β
respectively. The density function of X is given by:

fPsLD(x; θ, β) =

{
θ(β−1+θx)e−θx

β , x, θ, β ≥ 1

0, otherwise.
(2)

Remark 1. Let us make these two remarks.

(1) If β = θ + 1, this distribution is lindley distribution.
(2) If β = 1,, this distribution is a Γ(2, θ) distribution.

To find the mode, we may see that the first and second derivatives of fPsLD(x) are given by

d

dx
fPsLD(x) =

θ2 (2− β − θx) e−θx

β
= 0 gives x =

2− β
θ

and
d2

dx2
fPsLD(x̂) < 0.

For 1 ≤ β < 2 , x̂ = (2− β)/θ is the unique critical point which fPsLD(x; θ, β) is maximum.

For β ≥ 2,
d

dx
fPsLD(x; θ, β) ≤ 0,

and then then the density function fPsLD(x; θ, β) is decreasing in x. Therefore, the mode of
PsLD is given by

mode(X) =

{
2−β
θ for 1 ≤ β < 2
0 otherwise.

We can easily find the cumulative distribution function(cdf ) of the PsLD :

FPsLD(x) = 1− (β + θx) e−θx

β
;x, θ > 0 > 0, β ≥ 1. (3)

3. Pseudo lindley distribution(PsLD) and some properties

3.1. Survival and hazard rate function

These two functions are

SPsLD(x) = 1− FPsLD(x) =
(β + θx) e−θx

β

and

hPsLD(x) =
fPsLD(x)

1− FPsLD(x)
=
θ (β + θx− 1)

β + θx

be the survival and hazard rate function, respectively.

Proposition 1. Let hPsLD(x) be the hazard rate function of X. Then hPsL(x) is increasing.
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Fig. 1. Plots of the density function for some parameter values, black(0.5,1.5); red(0.25,2);
bleu(1,3); green(3,3); yellow(0.1,4); gray(2,8)

Fig. 2. Plots of the distribution function for some parameter values, black(0.5,1.5);
red(0.25,2); bleu(1,3); green(3,3); yellow(0.1,4); gray(2,8)

Proof. It easy to check that

d

dx
hPsLD(x) =

θ2

(β + θx)
2 > 0.

�

4. Moments and related measures

The kth moment about the origin of the PsLD is :

E(Xk) =
k! (β + k)

θkβ
, k = 1, 2, ...

Proposition 2. Let X1, X2, ..., Xn be n independent random variables from PsLD(β, θ)
distribution. Then the moment generating function(mgf) of S =

∑n
i=1Xi, is given by

MS(t) =
θn ((1− β) t+ θβ)

n

βn (t− θ)2n
(4)
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and

MX(t) = E(etX) =
θ ((1− β) t+ θβ)

β (t− θ)2
(5)

Remark 2. The kth moment about the origin of the exponential distribution is

E(Xk) =
k!

θk

Furthermore, the moment generating function of X and S exists, that is EetX < +∞, if
t < θ.

Corollary 1. Let X ∼ PsLD(β, θ), the mean and variance of X are :

E(X) =
β + 1

θβ
, V ar(X) =

β2 + 2β − 1

β2θ2

Theorem 1. Let X ∼ PsLD(β, θ), M = mode (X), me = median(X) and µ = E(X).
Then M < me < µ.

Proof. According to the increasingness of F (x) for all x, θ and β,

F (M) =

{
1− 2e−(2−β)

β for 1 ≤ β < 2

0 otherwise
, F (me) =

1

2

and

F (µ) = 1−
(
β2 + β + 1

)
e−( β+1

β )

β2

Note that F (M) is a decreasing function for all β ≥ 1. It easy to check that F (M) <
F (me) < F (µ).To this end, we have M < me < µ. �

The coefficients of variation γ, skewness and kurtosis of the PsLD are obtained as follows

γ =

√
V ar(X)

E(X)
=

√
β2 + 2β − 1

β + 1

skewness =
E(X3)

(V ar(X))
3
2

=
6β2 (β + 3)

(β2 + 2β − 1)
3
2

kurtosis =
E(X4)

(V ar(X))
2 =

24β3 (β + 4)

(β2 + 2β − 1)
2

Remark 3. All these expressions are independent of the parameter θ and depend upon the
parameter β only.
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4.1. Stochastic orders

Definition 1. Consider two random variables X and Y . We define these four stochastic
orders.

(a) X is said to be smaller than Y in stochastic order, denoted

X ≺s Y,

if and only if
FX(t) ≥ FY (t), for all t.

b) X is said to be smaller than Y in convex order, denoted

X ≤cx Y,

if for any convex function φ and provided expectations exist,

E[φ(X)] ≤ E[φ(Y )]

c) X is said to be smaller than Y in hazard rate order, denoted

X ≺hr Y

if and only if
hX(t) ≥ hY (t), for allt

(d) X is said smaller than Y in likelihood ratio order, denoted

X ≺lr Y,

if and only if fX(t)/fY (t) is decreasing in t.

Remark 4. Likelihood ratio order ⇒ Hazard rate order ⇒ Stochastic order.
If E[X] = E[Y ], then Convex order ⇔ Stochastic order.

Theorem 2. Let Xi ∼ PsLD(βi, θi), i = 1, 2 be two random variables. If θ1 = θ2 and
β1 ≥ β2, then X1 ≺lr X2, X1 ≺hr X2, X1 ≺s X2 and X1 ≤cx X2.

Proof. We have

fX1
(t)

fX2
(t)

=
θ1β2(β1 − 1 + θ1t)

θ2β1(β2 − 1 + θ2t)
e−(θ1−θ2)t.

For simplicity’s sake, we use ln
(
fX1

(t)

fX2
(t)

)
. Now, we can find

d

dt
ln

(
fX1

(t)

fX2
(t)

)
= − (θ1 − θ2) +

θ1(β2 − 1)− θ2(β1 − 1)

(β1 − 1 + θ1t)(β2 − 1 + θ2t)

To this end, if θ1 = θ2 and β1 ≥ β2 , we have d
dt ln

(
fX1

(t)

fX2
(t)

)
≤ 0. This means that X1 ≺lr X2.

Also, according to Remark 4, the theorem is proved. �
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5. Estimation of parameters

5.1. Maximum Likelihood Estimates (MLE)

LetXi ∼ PsLD(β, θ), i = 1, n be n random variables. The ln-likelihood function, ln l(xi;β, θ)
is:

ln l(xi;β, θ) = n ln θ − n lnβ +

n∑
i=1

ln(β − 1 + θxi)− θ
n∑
i=1

xi.

The derivatives of Lnl(xi;β, θ) with respect to θ and β are:

∂ ln l(xi;β, θ)

∂θ
=
n

θ
−

n∑
i=1

xi +

n∑
i=1

(
xi

β − 1 + θxi

)
(6)

∂ ln l(xi;β, θ)

∂β
0 =
−n
β

+

n∑
i=1

(
1

β − 1 + θxi

)
(7)

The two equations (6) and (7) cannot be solved directly, we must used the Fisher scoring
method. We have[

∂2Lnl(xi;β,θ)
∂θ2

∂2Lnl(xi;β,θ)
∂θ∂β

∂2Lnl(xi;β,θ)
∂β∂θ

∂2Lnl(xi;β,θ)
∂β2

]
θ̂=θ0
β̂=β0

[
θ̂ − θ0
β̂ − β0

]
=

[
∂Lnl(xi;β,θ)

∂θ
∂Lnl(xi;β,θ)

∂β

]
θ̂=θ0
β̂=β0

(8)

where, ∂2Lnl(xi;β,θ)
∂θ2 = − n

θ2 −
∑n
i=1

(
x2
i

(β−1+θxi)2

)
; ∂

2Lnl(xi;β,θ)
∂β2 = n

β2 −
∑n
i=1

(
1

(β−1+θxi)2

)
and ∂2Lnl(xi;β,θ)

∂β∂θ = ∂2Lnl(xi;β,θ)
∂θ∂β = −

∑n
i=1

(
xi

(β−1+θxi)2

)
.

The equation (8) can be solved iteratively where θ0, β0 are the initial values of θ, β.

5.2. Moments estimates

Using the first moment m and the variance s2 about PsLD, we have{
m = β+1

θβ

s2 = β2+2β−1
θ2β2

(9)

We solve this nonlinear system we find the couple
(
θ̂, β̂
)

, where
(
θ̂, β̂
)
> 0 for s > 0,m > 0.

θ̂ = 2m+
√
2
√
m2−s2

m2+s2 et β̂ = m2+s2

m2−s2+
√
2m
√
m2−s2 (10)

Theorem 3. The estimator(MM) θ̂ of θ is positively biased i.e, E(θ̂) > θ
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Proof.Let θ̂ = N(m) and N(t) =
β + 1

tβ
, for t > 0 we have for t and fixed β

d2

dt2
N(t) =

2 (β + 1)

βt3
> 0

N(t) is strictly convex. Now, by Jensen’s inequality, we have E(N(m)) > N (E(m)).

Thus, E(m) = N(µ) = N
(
β+1
θβ

)
= θ, E(θ̂) > θ. Then θ̂ is positively biased. �

Theorem 4. The estimator(MM) β̂ of β is positively biased.

Proof. Let β̂ = g(m) and g(t) =
1

θt− 1
, for t > 0 we have for t and fixed θ

d2

dt2
g(t) =

2θ2

(θt− 1)
3 > 0

g(t) is strictly convex. Now, by Jensen’s inequality, we have E(g(m)) > g (E(m)).

Thus, E(m) = g(µ) = g
(
β+1
θβ

)
= β, E(β̂) > β. Then β̂ is positively biased. �

5.3. Illustrative examples

Example 1. In this section, we give some simulation for four series of moments estimator
parameters distribution which Lindley, PL, Exponential and Gamma distribution. For the

exponential distribution; θ̂ = 1
m , Lindley distribution; θ̂ =

−(m−1)+
√

(m−1)2+8m

2m and gamma

distribution; θ̂ = s2

m , α̂ = m2

s2 , see Tables 1 and 2.

Distr(LD) m s θ̂

Serie1 100 71 0.0198

Serie2 50 36 0.0392

Serie3 15 12 0.1258

Serie4 3.32 2.34 0.5017

Distr(PsLD) m s θ̂ β̂

Serie1 100 71 0.01998 1.0083

Serie2 50 36 0.03927 1.0378

Serie3 15 12 0.11579 1.357

Serie4 3.32 2.34 0.60436 1.003

Table 1.

Distr(Exp) m s θ̂

Serie1 100 71 0.0100

Serie2 50 36 0.0200

Serie3 15 12 0.0666

Serie4 3.32 2.34 0.3012

Distr(Gamma) m s θ̂ α̂

Serie1 100 71 50. 41 1.9837

Serie2 50 36 25. 92 1.9290

Serie3 15 12 9. 6 1.5625

Serie4 3.32 2.34 1. 649 3 2. 013

Table 2.

Now, we used Data of survival times (in months) of 94 guinea individus infected with Ebola
virus, see Table 3.

Journal home page: www.jafristat.net



H. Zeghdoudi and S. Nedjar, Afrika Statistika, Vol. 11(1), 2016, pages 923–932. A pseudo
Lindley distribution and its application. 931

Survival time m=3.17,s=2.095 Obsf req LD θ̂=0.522 PsLD θ̂=0.772,β̂=1.004

[0, 2[ 32 38.217 32.651

[2, 4[ 35 28.16 35.981

[4, 6[ 17 15.089 16.37

[6, 8[ 7 7.33 6.0458

[8, 10] 3 3.152 2.0285

Total 94 94 94

χ2 − 2.9244 0.6796

Table 3.

Example 2. We consider from Lawless (2003), pp. 204 and 263 two series of real data. The
first one, represents the failure times (mm) for a sample of fifteen electronic components
in an acceleration life test : 1.4, 5.1, 6.3, 10.8, 12.1, 18.5, 19.7, 22.2, 23, 30.6, 37.3, 46.3,
53.9, 59.8, 66.2. The second set of data, are the number of cycles to failure for 25 100-cm
specimens of yarn, tested at a particular strain level : 15, 20, 38, 42, 61, 76, 86, 98, 121, 146,
149, 157, 175, 176, 180, 180, 198, 220, 224, 251, 264, 282, 321, 325, 653, see Table 4.

Data Distribution β θ log−likelihood Kolmogrov−Smirnov

Serie1 PsLD 1.129 0.684 −62.075 0.82

n=15 Gamma 1.442 0.052 −64.197 0.102

m=27.546 Weibull 1.306 0.034 −64.026 0.450

s=20.059 Lognormal 1.061 2.931 −65.626 0.163

Serie2 PsLD 1.086 0.010 −150.232 0.128

n=25 Gamma 1.794 0.010 −152.371 0.135

m=178.32 Weibull 1.414 0.005 −152.440 0.697

s=131.097 Lognormal 0.891 4.880 −154.092 0.155

Table 4.

6. Conclusion

In this work, we proposed a two parameter PsLD, of which the LD is a particular case.
Several properties have been discussed : moments, cumulates, characteristic function, failure
rate function, stochastic ordering, distributions of sums, the maximum likelihood method
and the method of moments. The LD does not provide enough flexibility for analyzing and
modeling different types of lifetime data and survival analysis. But the PsLD is flexible ,
simple and easy to handle. Many properties and applications are given which confirm the
goodness of fit and it is better than Lindley, Exponential, Gamma, Weibull, Lognormal
distributions.
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