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ABSTRACT

Diagnosis and Recommendation Integrated System (DRIS) is an approach to nutrient diagnosis of
crops, holistically through the relationship between nutrient balance of plants and soil.  The objective
of this study was to investigate the influence of sample size in DRIS model parameterisation, to
diagnose nutrients status in fruit crops. Published data were resampled to obtain different sample
sizes, ranging from 40 to 1000, with steps of 30. For each sample size, 1000 replications were generated
to determine the mean value of the desired parameter (nutrient indices and Nutrient Balance Index).  All
nutrient indices decreased rapidly as sample size increased from 40 to 200.  For each nutrient considered,
indices varied slightly from 200 to 1000. This study has revealed that the size of sample used to
establish DRIS norms, determines the accuracy of nutrient diagnoses in pineapple (Ananas comosus
(L.) Merr.). The optimal data bank for nutrient diagnosis in the crop (pineapple) used in this study  is
200.
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RÉSUMÉ

Le système intégré de diagnostic et de recommandation (DRIS) est une approche de diagnostic des
nutriments des cultures, de manière holistique à travers la relation entre l’équilibre nutritif des plantes
et du sol. L’objectif de cette étude était d’étudier l’influence de la taille de l’échantillon dans la
paramétrisation du modèle DRIS, pour diagnostiquer l’état nutritionnel des cultures fruitières. Les
données publiées ont été rééchantillonnées pour obtenir différentes tailles d’échantillon, allant de 40
à 1000, avec des pas de 30. Pour chaque taille d’échantillon, 1000 réplications ont été générées pour
déterminer la valeur moyenne du paramètre souhaité (indices nutritionnels et indice d’équilibre nutritif).
Tous les indices nutritionnels ont diminué rapidement à mesure que la taille de l’échantillon augmentait
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de 40 à 200. Pour chaque nutriment considéré, les indices variaient légèrement de 200 à 1000. Cette
étude a révélé que la taille de l’échantillon utilisé pour établir les normes DRIS détermine la précision
des diagnostics nutritionnels chez l’ananas (Ananas comosus (L.) Merr.). La banque de données
optimale pour le diagnostic des nutriments dans la plante (ananas) utilisée dans cette étude est de 200.

Mots Clés :   Ananas comosus, indice d’équilibre nutritif, indices nutritifs

INTRODUCTION

Plant analysis is a strategy for detecting
nutrient status in the field so as to plan for
appropriate soil-plant nutrition management.
Tools using foliar analysis are increasingly
common, since they are helpful for assessing
plant nutrient status. These tools are only
valuable when adequate procedures are used
for making diagnoses from analytical data
(Walworth and Sumner, 1986).

Critical leaf nutrient concentrations are
frequently used to diagnose the nutritional
status of plants (Sumner, 1979). This
approach is limited by the fact that accurate
interpretation of foliar values, can only be
obtained when sampling is restricted to the
same growth stage at which the standard
reference values for nutrients were established
(Dagbenonbakin, 2005).  Although it can be
used to make accurate diagnoses, the
procedure is limitated by critical nutrient values
which vary with the concentration of other
nutrients, plant age and among varieties (Bailey
et al., 1997).

The Diagnostic and Recommendation
Integrated System (DRIS) model, is the
alternative method which uses ratios of nutrient
concentrations to establish nutrient indices,
and helps to identify the nutrients from the
most to the least deficient (Beaufils, 1973).
The DRIS approach was designed to provide
valid diagnostics, irrespective of plant age,
tissue origin (Jones, 1991), cultivar and local
conditions (Payne et al., 1990); changes in
the method of tissue sampling and the time of
sampling (Moreno et al., 1996). It is designed
to assess relative nutrient imbalances or
deficiencies or both, in plant tissues (Beaufils,
1973; Sumner, 1981). The DRIS approach also

provides the relative order of plant nutrient
needs.

Since the level of one nutrient is compared
with those of all other nutrients, nutrient
balance is an inherent part of the system
(Marschner, 2012). Furthermore, the overall
status of nutrient balance in the plant is shown
by the absolute sum of all of the individual
DRIS indices. DRIS has been parameterised
successfully, to interpret the results of foliar
analyses for a wide range of crops (Agbangba
et al., 2010; Dagbenonbakin et al., 2010;
2011).

DRIS norms are usually developed and
validated from a large population of randomly
distributed observations, leading to resource
consumption.  Elwali et al. (1985), using a
small data set, concluded that local calibration
is necessary to improve the accuracy of DRIS
diagnosis. The sample size used to compute
DRIS norms for nutrient status diagnosis in
plant in literature, varies from 24 observations
(Leite, 1992), to more than 2800 (Sumner,
1977).

On the other hand, DRIS norms derived
from 10 observations were more
representative and efficient for nutrient
diagnosis, than those from larger observations
(Walworth et al., 1988). Inappropriate sample
size can lead to incorrect nutrient diagnosis in
plants.  Although it is well documented that
DRIS is regarded by some researchers to be
capable of providing nutrient diagnoses via
foliar analyses, regardless of the origin or age
of the plant, the effect of sample size on the
efficiency of nutrient diagnoses is not  fully
understood. It is largely presumed that small
sample size, leads to inadequate research
findings; in contrast, over-sized datasets could
waste valuable time and resources. In this
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work, we hypothesize that the size of sample
used to establish DRIS norms determines the
accuracy of nutrient diagnoses in crop
production.

MATERIALS  AND  METHODS

Data source and field conditions. Data used
in this investigation were extracted from those
used in Dagbenonbakin et al. (2010), which
had recorded pineapple fruit yield cv-smooth
cayenne and composition of leaves. Sixty plots
of 16 m2 (4 m x 4 m) each were installed using
a string rope in the farm fields. At flowering
stage, leaf samples per plot were taken for
nutrient diagnosis in the laboratory.

Fruit yield was evaluated at production.
This allowed to constitute a data matrix of
content of six nutrients (N, P, K, Ca, Mg and
Zn) and yields, recorded in the 60 plots
sampled.

This study was conducted in the district
of Allada, located at latitude 6°34' and 6°47'
north, longitude 1°59' and 2°15' east, in the
southern part of République du Bénin (West
Africa). The climate is sub-equatorial, with two
rainy seasons (March to June and September
to November) and two dry seasons (July to
September and November to March). The
major soil type covering most of the studied
area are Acrisols

Model development and simulation design.
The data matrix was divided into high and low
yielding subpopulations, using the mean interval
of confidence as criterion for cut-off. The
nutrient ratio was calculated for both the high
and low yielding subsamples, so that each of
the nutrients determined in the tissue appeared
in the denomination and in the numerator in
ratios with each of the other nutrient (for
example N/P and P/N). For each form of
expression, the variance for both of the high
and low yielding subsamples was calculated.

A variance ratio for each nutrient ratio was
also determined by dividing the variance of the
low yielding subsample by the variance of the
high yielding subsample (Elwali et al., 1985;

Amundson, 1987; Payne, 1990). For each pair
of nutrients, the form of expression, which
gave the highest variance ratio, was selected
as the parameter to be used for DRIS-
evaluation. The mean of the selected
parameters for the high yielding subsample
became the foliar diagnostic norms then used,
along with the standard deviation, to calculate
DRIS indices for diagnostic purposes.

Means and standard deviations of DRIS
reference parameters in the high yielding
subsample were then programmed for
diagnostic purposes, using the following
general calibration formula (Rathfon and
Burger, 1991; Bailey et al., 1997).

X indices =

where:
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Nutrient indices calculated by this formula
ranged from negative to positive values,
depending on whether a nutrient was rated
insufficiently or excessively, with respect to
all other nutrients considered. The more
negative the index value is for a nutrient, the
more limiting that nutrient tends to be.

A measure of Nutritional Balance Index
(NBI) among any group of nutrient was
obtained by adding the values of DRIS indices
for that group of nutrients, irrespective of sign.
The closer the value of this index to zero, the
better was the balance among those nutrients.
Means and coefficients of variation (CVs) for
DRIS reference parameters in high-yielding
subsamples, were used in a special calibration
formula as described by Beaufils (1973).

A bootstrap resampling method (Efron and
Tibshirani, 1993) was applied using data from
Dagbenonbakin et al. (2011) to obtain different
sample sizes, from 40 to 1000 with steps of
30.

For each sample size, 1000 replications
were generated to determine the mean value
of parameters of interest (nutrient indices and
NBI). Evolution trend curves and boxplots of
nutrient indices and NBI were drawn according
to sample sizes.  The optimal size identified at
the point where the curve begins no longer
varied significantly with size.

RESULTS  AND  DISCUSSION

Nutrient indices and balance.  Evolution
trend curves of nutrients indices were globally
similar for all nutrients (Fig. 1a). Nitrogen
indices ranged from 0.07 for 40 samples, to -
0.03 for 200 samples. Phosphorus indices
decreased from 0.11 (40 samples) to 0.06 (200
samples); while K indices dropped from 0.10
to 0.09, for 40 and 200 samples, respectively.
The trend for Mg indices was close to that of
N. Calcium indices decreased from 0.12 to
0.04; while sample size increased from 40 to
200.  A  weak  variation  of  Zn  indices from
-0.12 to -0.13 was observed.

Whichever the nutrient considered, indices
values varied slightly from 200 to 1000
samples, meaning that they reached their
optima (maximum or minimum). The similar
trend among all nutrients is attributed to the
interdependence in influence on yield between
nutrients. Indeed, the DRIS approach uses
ratios of elemental concentrations to establish
a series of values  to identify the elements from
the most to the least deficient (Beaufils, 1971).
DRIS is based on nutrient balance (ratios),
capturing the natural interdependence between
nutrients (Beaufils, 1973).

The Nutritional Balance Index (NBI), which
is useful to the plant nutritional status diagnosis
(Wadt, 1996), decreased from 0.125 to 0.08,
when sample size increased from 40 to 200
(Fig. 1b). Thus, sampling appeared to improve
the diagnosis efficiency; beyond 200 samples,
the diagnosis efficiency failed to change
significantly. Indeed, NBI ranged from 0.080
to 0.079, where that it levelled off.

The trends in Figure 1b are consistent with
those in Figure 1a, according to the effect of
sampling size. Therefore, sampling more than
200 should be considered a waste of time and
resources due to the slight gain of diagnosis
efficiency. Existing literature, reports a large
variation in the database size for DRIS norms
definition, from just 24 observations (Leite,
1992), up to >2,800 (Sumner, 1977). This
observation implies the need for a rigorous
study to guide technicians on the appropriate
choice of sample size in order to reduce
diagnostic costs.

Previous sample size used for diagnosis of
nutrient status in pineapple, varied from 60
(Agbangba et al., 2010; Dagbenonbakin et al.,
2010) or 104 (Teixeira et al., 2009) to 1185
(Angeles et al., 1990). The optimal sample size
from the present study is not consistent with
that of Letzsch and Sumner (1984) for maize,
who concluded that the best size banks were
several thousands, random and had a
substantial number of high yield observations.
The reason for the differences in optimum
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Figure 1.   Evolution trend of (a) nutrient indices and (b) nutrient balance index according to the sample
size.

sample size for nutrient diagnosis in pineapple
and maize could be attributed to plants’
different growth characteristics and nutrient
requirements.

Dispersion and median values. Results
showed that, irrespective of nutrient, there was

similarity in performance of sample size
response (Fig. 2). The dispersion and median
values of the nutrient indices tended to
diminish, with the increase in the sample size;
and to stabilise at 200 samples. Pineapple plants
exhibit variability in growth and nutrient uptake
across different parts of the field, due to
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Figure 2. Boxplots of nutrient indices according to the sample sizes.

variations in soil conditions, drainage and
microclimate (Sanewski et al., 2018). A small
sample size, may thus not capture this
variability adequately, leading to a sample that
is not representative of the entire field’s nutrient

status. This can result in inaccurate nutrient
deficiency or sufficiency assessments.

With a small sample size, there is a higher
risk of sampling errors such as selecting leaves
from non-representative plants or overlooking
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areas with different soil fertility levels. This
can skew the nutrient analysis results and lead
to incorrect interpretations of nutrient
deficiencies or excesses. These findings
suggest that considering sample size; while
diagnosing nutrient in pineapple, as incorrect
nutrient diagnosis, it may lead to either under-
application or over-application of fertilisers,
thus impacting crop health and productivity
(Mourão Filho, 2004).

CONCLUSION

This study has revealed that the accuracy and
efficiency of nutrient diagnoses are
significantly influenced by the size of the
sample used to establish DRIS norms. The
optimal sample size for nutrient diagnoses in
pineapple cropping in Benin is 200. Future
research can focus on the spatial distribution
of sampling in pineapple plantations to ensure
representativeness of this size and the
evaluation of varietal differences.
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