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Abstract: Recent years have witnessed a notable increase in the occurrence of blackouts, especially in developing nations, attributed to 

the continuously growing demand on modern power networks. Given that the demand shows no signs of abating and is projected to 

increase further in the coming years, additional research on power system stability is imperative. This study, therefore, investigates 

voltage stability assessment in power systems using the L-index methodology, focusing on the Nigerian 28-bus system and the IEEE 

system. The L-index offers a practical means of identifying weak buses and evaluating voltage stability margins. Calculating L-index 

values for load buses under diverse conditions identifies critical points, with higher values indicating vulnerability. The research 

investigates injecting reactive power at load buses to prevent collapse, comparing outcomes with and without compensation. Analyzing 

the L-index's performance across varied loading scenarios confirms its precision in predicting breakdown points and identifying critical 

buses. Load flow analysis of the Nigerian 28-Bus system reveals that only bus 16 exceeds voltage limits, while line analysis shows total 

power losses. Increasing loadability exposes bus 16 as the weakest, supported by its low voltage magnitude. The research confirms bus 

16 as the system's weakest point, guiding corrective measures to enhance stability and prevent collapse. Utilizing Matlab for 

implementation, this study contributes valuable insights into system vulnerability and provides a framework for improving voltage 

stability in power systems.  

Keywords: Voltage Collapse, Voltage Collapse Prediction, Voltage Stability, L-index, Static Synchronous Compensator (STATCOM), 

Voltage Stability Enhancement. 

 
1. INTRODUCTION 

Voltage collapse has emerged as a significant challenge for electric power companies worldwide in recent times [1, 2]. 

It is a critical issue in power system operation and planning, characterized by a gradual decline in system voltage. The 

ever-increasing demand for electricity from consumers has led to a rapid increase in the complexity of modern power 

systems. This complexity places additional stress on the system, rendering it more susceptible to voltage instability and, 

ultimately, voltage collapse [3, 4]. Notably, emerging nations have experienced significant blackouts in recent years due to 

the continuous rise in demand on contemporary power networks. As the demand shows no signs of slowing down and is 

anticipated to increase further in the coming years, it becomes imperative to conduct additional research on power system 

instability. 

The prevailing trend towards a competitive business environment has compelled modern utilities to optimize available 

resources. Consequently, today's power systems face heightened burdens due to increasing demand, the pursuit of 

maximum economic benefits, and efficient utilization of transmission capacity [5, 6]. The more efficient utilization of the 

transmission network has resulted in many power systems operating closer to voltage stability limits, thereby elevating the 

risk of voltage collapse. In such delicate circumstances, even minor disturbances can jeopardize system security and lead to 

voltage decline [7]. Therefore, there is an urgent need for a predictive method that can assess the voltage security level of a 

given operational situation and alert the system operator to take necessary preventive actions.  

Although the existing methods have contributed in no small measures as regard voltage collapse detection in power 

systems, there are still unsolved issues associated with those method. For example, Fast Voltage Stability Index (FVSI) 

may not capture long-term stability issues or consider the effects of large disturbances on the system. Voltage Stability (Lp) 
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Index may require extensive computational resources for large power systems. Voltage Stability Load Bus Index (VSLBI) 

may require detailed modeling of load characteristics and may not capture a wide range of voltage stability issues.  The L-

Index stands out as a superior measure of voltage collapse prediction for several reasons. Unlike other indices, the L-Index 

directly measures the proximity to voltage collapse by considering the distance to the nearest saddle-node bifurcation point. 

This provides a clear indication of how close the system is to instability. Additionally, the L-Index is computationally 

efficient, making it suitable for large power systems. While other indices offer valuable insights, the L-Index's direct and 

efficient approach makes it a preferred choice for voltage collapse prediction. The L-Index emerges as a better measure of 

voltage collapse prediction compared to other methods. Its direct measurement of proximity to voltage collapse and 

computational efficiency makes it a valuable tool for assessing system stability and guiding corrective actions. By 

leveraging the advantages of the L-Index, power system operators can better anticipate and mitigate voltage instability, 

thereby enhancing grid reliability and resilience. In this study, L-index-based technique is employed, which measures the 

distance from the current operating point to the nearest saddle-node bifurcation point on the voltage stability boundary. Its 

main advantage is that it provides a direct measure of the proximity to voltage collapse and is computationally efficient for 

large power systems. The traditional L-index-based approaches usually assume a static system model. As such, dynamic 

stability issues remain unsolved. However, this bottleneck is overcome in this work as the dynamic system operational 

loadings are captured, which also takes into account accurate system parameters that may be sensitive to modeling 

uncertainties. In this context, this study aims to assess the effectiveness of the L-index methodology in predicting voltage 

collapse in modern power systems. The L-index is a stability index that considers both static and dynamic aspects of 

voltage stability, making it a promising candidate for accurately assessing the proximity of voltage collapse. By leveraging 

the capabilities of the L-index and incorporating advanced modelling techniques, such as the inclusion of STATCOM 

devices, we seek to improve the accuracy and reliability of voltage collapse prediction. Specifically, this study investigates 

the capability of the L-index to foresee the proximity of voltage collapse in a real-world power system scenario, focusing 

on the IEEE 30-bus system and the Nigerian 330 kV, 28-bus system as case studies. By comparing the performance of the 

L-index with existing methods and evaluating the impact of STATCOM devices on system stability, we aim to provide 

insights into the effectiveness of the proposed approach in addressing the challenges posed by voltage collapse. 

The structure of this paper is as follows: Section 2 presents an extensive review of literature while the mathematical 

formulation of the L-index technique starting from the theoretical framework and its application in voltage collapse 

prediction is presented in section 3. In section 4, we first described, in brief, the case studies considered, which include the 

IEEE 30-bus system and the Nigerian 330 kV, 28-bus system, highlighting the key features of each system. The results of 

the analysis as well as discussion of the findings are also presented in section 4. Finally, the paper is concluded in section 5, 

summarizing the main contributions. The directions for future researches are also outlined in this section. 

2. EXTENSIVE LITERATURE REVIEW 

Several authors have contributed to the effort of accurately predicting voltage collapse in a system. For example, in the 

study presented in reference [8], a new forecasting technique is introduced to anticipate the voltage stability class label 

based on a suggested classification approach. The model integrates Hopf and limits driven bifurcations and utilizes an 

information theoretic feature selection method, an extreme learning machine (ELM) as the forecast engine, and a line 

search procedure to fine-tune parameters. The effectiveness of the proposed classification model and prediction method is 

demonstrated using the New England 39-bus and IEEE 145-bus test systems. Compared to previous artificial intelligence-

based approaches, this method provides more accurate stability class labels with reduced computational effort, enabling 

quick and precise determination of voltage stability states in unknown situations. In the study carried out in [9], the authors 

present a unique technique based on data mining and machine learning for instantaneous evaluation of short-term voltage 

stability (STVS) under significant disruptions. The method employs the calculation of the maximal Lyapunov exponent 

and dynamic voltage indices to classify the stability of the power system in different operational modes offline. A machine 

learning algorithm, specifically a Random Forest, is trained on the processed multivariate time series data of the power 

system's dynamic response to categorize the post-disturbance functioning state in real-time, detecting both quick voltage 

collapses and fault-induced delayed voltage recovery events. In [10], the authors proposed an active learning approach to 

enhance the usefulness of machine learning in power system prediction. The method continuously interacts with the offline 

training and online prediction processes, identifying operational points where machine learning predictions diverge from 

actual system conditions. By structuring the training set around these acknowledged operational points, the capacity of 

machine learning algorithms to predict impending power system conditions is improved. Additionally, the approach 

minimizes the number of simulations on a complex power system model, expediting the offline training process. However, 

drawbacks include significant training time, prediction time, and the number of measurements required to achieve high 

prediction accuracy. In [11], the authors proposed a unique method for forecasting the voltage collapse point using the 

quadratic line voltage stability index (q-LVSI) and auditory machine intelligence (AMI). The method is applied to a subset 

of buses in the 330kV-30bus power network in Nigeria. To validate the proposed method, it is compared to the Group 

Method of Data Handling for Time Series (GMDH Time-Series), a polynomial function fitting neural network based on 

inductive learning and self-organization. Simulation tests show that the AMI procedure is competitive with the GMDH 

time-series method in terms of performance. In [12], the authors present methods for estimating the severity of voltage 

collapse contingencies under uncertainty and demonstrate their application in the French EHV network for ranking 

potential risks. The research highlights the importance of incorporating the original characteristics of past load distributions 
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to achieve accurate assessments. Two likelihood severity estimation approaches, standard and generalized, are developed 

to account for the correlation and nature of the probability distribution of the multivariate load parameter representing 

uncertainty in operating conditions. Accurate severity estimation is achieved with reduced computing effort using linear 

sensitivities and machine learning algorithms. The linear sensitivities are computed by sampling different load stress 

directions from the multivariate load parameter state space using the Latin Hypercube Sampling (LHS) approach. The 

proposed concepts are demonstrated on the French network using seven significant contingencies, and the severity 

estimations are validated for accuracy and computing efficiency through full-fledged contingency simulation.  

In [13], the authors proposed an online forecast technique for short-term voltage stability (STVS) based on long short-

term memory networks (LSTM) and graph convolutional networks (GCN). They introduce GCN-LSTM, a novel machine 

learning framework that combines GCN to capture spatial aspects and LSTM to capture temporal aspects of power grids. 

The proposed technique utilizes the GCN-LSTM model for STVS online forecasting, capable of predicting STVS results 

and multiplexing spatial-temporal STVS evolution trends. The method is tested on a modified 39-bus system and a 68-bus 

system as case studies, using training and test data generated by the Power System Simulator/Engineering (PSS/E). 

Simulation results demonstrate the high efficiency of the suggested method. In [14], the authors proposed an approach for 

online assessment of the voltage stability margin (VSM) using an optimal fuzzy system and feature selection method. The 

technique performs well for large power systems and consists of three main components: feature extraction and selection, 

estimation, and training. The association rules (AR) technique is used to select the most efficient loading parameters, 

which serve as the input to the adaptive neuro-fuzzy inference system (ANFIS) for VSM estimation. The ANFIS is trained 

effectively using the Harris Hawks Optimization Algorithm (HHOA). The suggested method allows for accurate online 

monitoring of VSM in both small and large systems, enabling the application of relevant control measures to prevent 

voltage collapse. MATLAB simulations demonstrate that the proposed technique outperforms previously presented VSM 

assessment methodologies. The technique is tested on the 39-bus, 118-bus, and 300-bus IEEE test systems. In [15] the 

authors present a new technique for identifying load buses that are close to voltage collapse by evaluating the static voltage 

stability of load buses under given operating conditions. The voltage equation of a two-bus network is used to create the 

Thevenin equivalent circuit of the load bus, from which a voltage stability index, known as the L-index, is derived. 

Artificial neural networks and the Newton Raphson load flow method are used to calculate the L-index. This method helps 

identify weak points in the system that require significant reactive power support, with the bus having the highest L-index 

value indicating the most vulnerable bus in the system. The technique is evaluated using the IEEE-14 bus test system. In 

[16], the authors proposed the use of artificial neural networks (ANN) for early voltage collapse forecast in a power system. 

The ANN is trained using data gathered from multiple simulations, enabling the estimation of the stability margin against 

voltage collapse online. The L-index is employed as a simple and straightforward indicator that can be expanded to a 

multi-node system. The proposed technique provides a quick real-time voltage security evaluation in a power system, 

offering a helpful tool for prompt voltage collapse prediction. In [17], a recurrent neural network (RNN) mechanism based 

on voltage instability is proposed as an early predictor. The RNN is constructed using voltage phase angle data obtained 

from each bus in the electrical network using PMUs. The network is trained using Particle Swarm Optimization (PSO) and 

tested on 4-bus and 30-bus IEEE standard systems. The performance of training the RNN with the backpropagation (BP) 

algorithm is compared with training it using PSO. The results demonstrate that both BP and PSO training algorithms 

effectively forecast voltage instability. In [18], the use of instantaneous system supervision techniques to alert the power 

system before voltage collapse occurs is explored. Different line voltage stability indices (LVSI) are examined to 

determine their effectiveness in identifying the weakest lines in the power system. The IEEE 9-Bus and IEEE 14-Bus 

systems are used to investigate these indices and confirm their applicability. Additionally, the study introduces the use of 

an artificial neural network (ANN) for real-time voltage stability monitoring. The computed indices and the estimated 

indices using ANN are shown to be useful in predicting voltage collapse in the system.  

In [19], a sliding three-dimensional convolutional neural network (3D-CNN) instantaneous continuous monitoring 

system (CMS) is proposed for assessing long-term voltage stability. The dynamic reactions and topological data of a power 

system are combined and transformed into sequential state images, which serve as input to the sliding 3D-CNN. The CMS 

takes into account both spatial and temporal correlation by using localized weight-shared convolution processes. The 

effectiveness of the proposed system is tested on the New England 10-generator-39-bus system. In [20], the author 

describes the use of an artificial neural network to assess the voltage stability of a power supply. The neural network maps 

the relationship between the operating characteristics of the power system and an energy metric that indicates how close 

the system is to voltage collapse. This information can be utilized by operators to initiate appropriate control actions to 

prevent voltage collapse. The suggested approach can be integrated into a comprehensive dynamic security analysis 

package as an online voltage stability assessment tool. In [21], support vector regression (SVR) is employed to forecast 

dynamic voltage collapse on a real power system. The Predictor of Voltage Collapse (PTSI), derived from data obtained 

from dynamic simulations, is used to initially anticipate dynamic voltage collapse. Simulations are conducted on a real-

world 87-bus test system with load increase as the contingency. The information obtained from time-domain simulations is 

then fed into the SVR, which utilizes support vector regression to predict the dynamic voltage collapse indices of the 

power system. The selection of Kernel function type and Kernel parameter is considered to enhance training time and 

improve SVR accuracy. The suggested SVR approach is evaluated and compared with a multilayer perceptron neural 

https://doi.org/10.53982/ajerd.2024.0701.27-j
https://doi.org/10.53982/ajerd


https://doi.org/10.53982/ajerd.2024.0701.27-j                 Alayande et al. 

Volume 7, Issue 1 

https://doi.org/10.53982/ajerd  263 

network (MLPNN) to confirm its effectiveness. The studies indicate that SVR performs dynamic voltage collapse 

forecasting tasks faster and with higher accuracy compared to MLPNN. 

In [22], a novel index is proposed to evaluate voltage stability effectively. This index is developed using the network 

ABCD parameters and is based on an accurate model of the transmission system. One key advantage of the proposed index 

is its ability to forecast voltage collapse by considering the effects of the respective directions of active and reactive power 

flows in the transmission lines. The suggested index can accurately forecast voltage stability under various operating 

conditions and situations, enabling precise contingency analysis and ranking. In [23], the authors proposed an innovative 

approach to estimate the static voltage collapse point in power systems using a quadratic approximation. This method only 

requires one power flow solution and provides a more precise estimation of the collapse point. Additionally, it improves 

estimation accuracy for power systems under stress. The results demonstrated that it converges more quickly compared to 

more sophisticated methods. In [24], a novel node voltage stability index (NNVSI) is presented for forecasting static and 

dynamic voltage collapse occurrences. The index is based on node voltages and network admittance matrices and is 

applicable to an n-bus system. The NNVSI is evaluated using the IEEE New England test system and compared with other 

methods such as the power flow Jacobian singular value, power transfer stability index (PTSI), and modified voltage 

stability index (MVSI). The results show that the suggested index efficiently predicts static and dynamic voltage stability 

collapse points. In [25], the adaptive multi-step Levenberg-Marquardt (AMSLM) method is proposed to address the power 

flow issue in ill-conditioned power systems. An AMSLM continuation power flow (AMSLM-CPF) approach is presented 

to assess the stability of voltage, which relies on the newly suggested AMSLM power flow (PF) method. The parameters 

of the novel AMSLM-PF method are optimized using a fuzzy inference system (FIS). The effectiveness of the proposed 

AMSLM-PF and AMSLM-CPF approaches is demonstrated through comprehensive simulation results. In [26], the critical 

switching of capacitors is investigated to avoid voltage instability in transmission networks. Both static and dynamic 

methodologies are employed to analyze the issue. Static analysis is used to identify steady-state power flow solutions for 

different cases, including pre-disturbance steady-state, post-disturbance steady-state without VAR support, and post-

disturbance steady-state with VAR support. The findings illustrate how the characteristics of aggregate load and system 

conditions impact critical switching time. 

In [27], a novel approach is proposed that utilizes a flexible classification criterion to detect operating situations that are 

close to or within the range of voltage instability. Decision trees are constructed and validated using training and test data 

sets, and a sampling strategy is suggested to reduce computational load. Time domain simulations using PSS/E are also 

used to evaluate the forecasting accuracy of the decision trees, particularly in network topologies involving line outages. In 

[28], the analysis of voltage instability related to the AVR voltage saturation phenomenon is performed in steady-state 

conditions. A new approach based on the predictor-corrector technique is presented to determine the total system 

equilibrium of the power system model. This methodology computes Saddle Node Bifurcation (SNB) and Saddle Limit 

Induced Bifurcation (SLIB) points while considering the voltage limits of all generation units' AVR. The 39-bus system in 

New England is used as an example to demonstrate the effectiveness of the proposed approach. In [29], a novel method is 

proposed to calculate the probability distribution of load-space proximity to voltage instability caused by the saddle-node 

bifurcation point. The method also estimates the probability distribution of the time to voltage instability for a power 

system with unknown upcoming loading scenarios. The approach approximates the saddle-node bifurcation surface using a 

second-order estimation. The suggested method can be utilized in power system security assessment to quickly and 

effectively determine the proximity to voltage stability issues. The performance of the proposed method is evaluated using 

Monte Carlo simulation on a numerical example and the IEEE 9-bus test system. In [30], the authors provide a simple 

model of the dynamics following a saddle-node bifurcation and illustrate the loss of stability when a stable equilibrium 

point disappears. This finding is applicable to various types of dynamical systems with one parameter. Based on these 

findings, a model for voltage collapse in power networks is proposed. The model offers an explicit mechanism for the 

dynamics of voltage collapse. The authors demonstrate the model by constructing a straightforward power system model 

and simulating a voltage collapse. In [31], Ant Colony Optimization (ACO) is utilized to identify voltage collapse 

situations in power networks, aiming to accelerate computation for online detection and prediction in smart grid 

applications. Two case studies, the IEEE 118-bus system and the 9-bus system, are employed to evaluate the efficiency of 

the proposed detection algorithm. The approach can identify the nearest saddle-node bifurcation point in an electric power 

system and pinpoint the weak power system buses and the contributing factors to voltage collapse on those buses.  

In [32], a new algorithm for protection against voltage collapse is proposed, which utilizes the magnitudes and angles of 

local phasors. The algorithm calculates a voltage collapse criterion based on the change in apparent power line flow at 

specific time intervals. The criterion reflects the observation that line losses increase more rapidly than apparent power 

delivery in the vicinity of voltage collapse. When a voltage collapse occurs, the criterion becomes zero, allowing the relay 

to respond promptly with the appropriate setting. The algorithm can be implemented efficiently by numerical relays and 

provides a straightforward and fast computation. The algorithm is evaluated using various test systems, including the New 

England 39-bus test system. In [33], the authors introduce the Power Transfer Stability Index as an indicator for predicting 

dynamic voltage collapse in power systems. The performance of this indicator is evaluated using the 9-bus and 39-bus test 

systems under various operating conditions. The simulation process incorporates dynamic power system models, including 

automatic voltage regulators, over excitation limiters, under load tap changers, and induction motors. Comparative 

simulation test results demonstrate that the Power Transfer Stability Index provides a comparable forecast of dynamic 
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voltage collapse when compared to the voltage collapse prediction index. In [34], the authors proposed the use of statistical 

techniques to calculate the voltage collapse proximity in a power system. The Voltage Collapse Proximity Index (VCPI) is 

employed to retrieve historical data for different contingencies and loading conditions, as the model-building process 

requires the compilation of a database. Combining this analytical approach with existing equipment in power system 

control centres could enable future online applications. The VCPI is a well-documented index frequently suggested as an 

alternative for online voltage collapse prediction. However, it requires knowledge of the electrical grid layout, which is not 

feasible during malfunctions such as line outages. In [35], the stability of power systems is examined using the modal 

analysis technique. The modal analysis approach predicts stability margins or distances to voltage collapse based on 

reactive power load demand. Q-V curves are also utilized to validate the results obtained through modal analysis. The 

analysis is conducted on two well-known power systems, the IEEE 30 Bus system and the Western System Coordinating 

Council (WSCC). The modal analysis technique is applied considering constant load models, voltage-dependent load 

models, and induction machine load models for both systems. The critical mode for each system is identified, and the 

participation factor is used to identify the weakest buses contributing the most to the critical mode. Q-V curves are 

constructed at these buses to verify the outcomes of the modal analysis method and determine the stability margin or 

distance to voltage collapse. In [36], the authors proposed a real-time method for estimating voltage collapse in a network 

using an indicator that needs to be calculated at each bus. This indicator is called the Voltage Collapse Prediction Index 

(VCPI). The procedure requires the network admittance matrix of the power system and voltage phasor data from the buses. 

The VCPI is derived at each bus using the recorded voltage phasors and the network admittance matrix, indicating the 

proximity of a bus to voltage collapse. 

In [37], the authors proposed a voltage control technique based on Model Predictive Control (MPC) to mitigate voltage 

instability. The technique focuses on the capability of reactive power and the responsiveness of Under Load Tap Changers 

(ULTCs) to voltage drop following contingencies. By utilizing reactive power injection and tap changing, the suggested 

control scheme aims to prevent voltage collapse. The effectiveness of the proposed technique is demonstrated on a 4-bus 

power system, showing its ability to prevent voltage collapse. In [38], the authors introduce two new approaches for 

determining the critical point in power systems. One approach combines the fundamental methodology with a correctness 

method based on Continuation Power Flow (CPF). This approach improves calculation speed by avoiding the repetitive 

analysis of the same topology and bus types. The other approach is a direct method that leverages a fresh perspective on 

power systems and the fundamental physical principles of voltage collapse and critical points. The CPF is primarily 

considered in AC systems, while the similar CPF in DC systems is examined for comparison. Numerical verification 

confirms that the proposed methods reduce the computational load of the CPF method in DC systems. In [39], the authors 

proposed a method called relaxed decoupled direct calculation (RDDC) for locating voltage collapse points (VCPs). The 

direct computation of VCPs using a Newton-Raphson type method faces sensitivity issues with initial values. To address 

this, the RDDC method integrates with a boundary tracking method that utilizes data from neighbouring VCPs. The 

findings demonstrate that the RDDC method can accurately compute VCPs in less time compared to continuation power 

flow. When RDDC is combined with boundary tracking, the static voltage stability area boundary can be determined with 

high accuracy, leading to improved computational performance for various test systems ranging from nine buses to ten 

thousand buses. In [40], an improved method to prevent voltage collapse is proposed, which relies on repeated voltage- and 

current-phasor measurements to assess voltage stability at a bus. The voltage-collapse criterion is computed based on the 

change in apparent-power bus injection over time. The method observes that in the vicinity of voltage collapse, no more 

apparent power can be transferred to the affected bus. The one-step method needs to be checked only once, regardless of 

whether the lines are generating or absorbing reactive power. The algorithm is extensively tested on multiple test systems, 

including a static IEEE 30-bus system and a dynamic Belgian-French 32-bus system with comprehensive dynamic models 

of power system elements relevant to voltage instability analysis. The results highlight the advantages of the proposed 

approach, which is straightforward, computationally efficient, and suitable for implementation in a numerical relay. In [41], 

an integrated method is proposed to forecast voltage stability margin (VSM) quickly for static voltage stability assessment 

(VSA) in power systems. The method combines correlation detection (CD) and random bits forest (RBF). A feature 

selection framework based on CD methods is developed to select representative features closely related to VSM and with 

less duplication. The RBF-based forecasting model is trained using the selected feature set and associated VSM. Once real-

time operating data is obtained, the trained model can rapidly generate the desired output.  

In [42], the authors proposed a data-driven technique for gaining insight into voltage magnitude fluctuations using 

synchronous phasor measurement unit (PMU) data to prevent voltage collapse. The strategy is based on the moment-based 

spectrum estimation technique and introduces a new indicator called the spectrum estimation-based stability indicator 

(SESI), which is based on random matrix theory. The SESI, acting as an inverse Jacobian related indicator, enables 

improved static voltage stability assessment in power systems with a large number of measurement variables. The 

effectiveness of the proposed strategy is demonstrated through case studies involving the IEEE 118-bus system, the IEEE 

300-bus system, and a Polish 2383-bus system. In [43], a line voltage stability index (LVSI) is presented to evaluate the 

stress condition and voltage stability state of lines in a power system. The index calculates the stability margin in megavolt 

amps (MVA). The IEEE 30-bus and IEEE 118-bus test systems are used to assess the efficacy of the proposed index, 

particularly its ability to accurately estimate the MVA margin under various loading situations. The derived MVA margin 

using the index can be utilized in congestion management of power systems. In [44], the states of a power system are 
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estimated using phasor measurement data from a subset of buses. A voltage stability index is determined based on the 

proportion of change in load power to the change in voltage magnitude, indicating the system's vulnerability to instability 

caused by topology or load changes. As the suggested index approaches 1, the system approaches the voltage breakdown 

point, while lower values indicate system stability. Load margin evaluation is conducted for stressed buses using a least 

squares method when the system is under voltage stress. The approach is tested on the 233-bus North Eastern Indian grid 

and the 39-bus New England test system with varying loads and topology, demonstrating the accuracy of the stability 

index calculation and load margin evaluation. In [45], the authors proposed a data-driven method for evaluating long-term 

voltage stability based on variational autoencoders (VAE) using PMU monitoring data. This technique utilizes 

unsupervised data mining and probabilistic learning to extract representative features. The method standardizes latent 

features in an anticipated stochastic distribution, which is different from conventional feature extraction techniques. A 

statistical indicator sampling latent properties after variance decline is suggested for evaluating long-term voltage stability. 

The method is tested on simulated power systems with various load-increasing models, demonstrating its accuracy and 

efficacy in determining voltage collapse points. In [46], a novel sensitivity method is developed for selecting the best 

control variables to reduce voltage instability in power systems. The method performs a sensitivity analysis on a voltage 

stability index called Thevenin-Based Voltage Stability Margin (TVSM), which is based on the coupled single-port circuit 

concept. The sensitivity approach calculates the changes in nodal voltages (magnitudes and angles) with respect to 

preventive controls. In [47], an index is proposed to assess the voltage stability condition of a power system under bus 

loading stress. The index is obtained from the sensitivity analysis of the maximum loadability problem based on an 

optimization model. By considering the difference between the maximum power transfer point and maximum loadability 

point, taking into account voltage-dependent loads such as ZIP and exponential models, the proposed index provides a 

reliable indication of voltage stability. Validation tests on two-bus and IEEE 30-bus test systems demonstrate the 

effectiveness of the proposed strategy.  

3. MATHEMATICAL FORMULATIONS 

This section presents the mathematical formulations for the existing voltage instability prediction methods including L-

index-based approach.  

3.1  L-Index-Based Prediction Method 

The line model, which can be thought of as the most basic power system configuration and which can also be examined 

analytically, is the starting point for this analysis. Figure 1 shows the node 1 supplying the load which can also be called 

the load node or consumer node and node 2 characterized by the generator node which could be represented by a PV node 

or slack node. The power system is a linear transmission system that can be presented in a matrix form as expressed below, 

Kessel (1986); 

 

 

 

Figure 1: Line model showing the generator G; the nodal voltages𝑉1, 𝑉2; nodal currents 𝐼1, 𝐼2; and complex powers 𝑆1, 𝑆2 
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where 
11Y , 

12Y , 
21Y and 

22Y  are the elements of the system admittance matrix [Y] . 

The complex power at bus 1is 

1 1 1S V I                                 (2) 

From Equation (1), 
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Let 
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Using Equation (4) in Equation (3) results in 

1
1 1 1 0 1 1

11

S
V V V V a jb

Y


                              (5) 

where 
1a  represents the real component of Equation (5) and 

1b  represents the imaginary component 

That is  
2

1 0 1 1cosa V V V                             (6) 

1 0 1 sinb V V                               (7) 

From Figure 1, we can write 

12
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L

L Q

Y Y

Y Y Y



                             (8) 

where 

LY  is the series admittance of the network  -model 

QY  is the shunt admittance of the network  -model 

Expansion of equation (5) gives 

 

   2

1 1 1 0 1 0 1 0 1 0 1cos sina jb V V V jV V                          (9) 

From (7),  
2
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                         (10) 
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                         (11) 

Squaring Equations (10) and (11) gives 

 
2

2 2 2 2 2 2 4 2

0 1 1 1 1 1 1 1 1 12V V a V b a aV V b                        (12) 

 

Manipulation of Equation (12) gives 
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where  
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1 11
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and  represents an angle of a complex number, Substituting Equation (4) into Equation (3) gives 

2

1 11 1 0 1 11S Y V V V Y                             (16) 
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The geometric interpretation of Equation (14) is that all states with amplitudes 
1V  that are constant lie on circles on the 

complex 
1S -plane with the radius being determined by 

11 0 1. .Y V V and the centre by 
11 1.Y V This scenario for a particular 

numerical example of a line is shown in Figure 2. Plotted are circles of constant voltage for 𝑉1= 0.8, 1.0 and 1.2 pu. (+) 

refers to the solution with the feasibly larger amplitude
1V , and (-) refers to the solution with a smaller amplitude.  

 
        Figure 2: Circles of constant voltage amplitude 𝑉1 

 

A collection of circles is created when 𝑉1 is changed inside the acceptable area, which is determined by 
1S , whose 

union creates the feasible state space in  1 1| 0D V V    . The desired stability limit of the current two-node system 

is the boundary curve of this region, or the envelope of all these circles. No physical significant solutions are feasible 

outside of the curve.  

 

The Jacobian matrix of the simple 2-bus system can be written as  
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where  1,f V   and  1,g V   are defined in Equations (6) and (7) respectively. 
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It can be easily shown that when the voltage collapse occurs at bus 1, using Equation (11), we can write 

 

4
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4

V
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 
                      (18) 

Also, the determinant of equation (17) equals zero at the collapse point. Therefore, 

  2 2

1 0 0 1det Jac 2 cos 0V V V V                          (19) 

From Equation (19), 
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By dividing Equation (3) by 
2

1 11V Y , we have 
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
                      (21) 

 

With the use of this relationship, an indicator for L  for evaluating voltage stability may be defined. For the workable 

solution with the huge voltage amplitude 
1V , its range is  

 L | 0 1R L                          (22

  

Therefore, 
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Figure 3 shows the geometric relationship when the values for the line curves of L   0.2, 0.4, 0.6, 0.8, 1.0 are plotted. 

 

 
Figure 3: Indicator L in the complex 𝑆1 plane 

 

Since the transmission system can be represented using a hybrid (H) matrix  

 

LL LGL L L

G G GGL GG

Z FV I I
H

I V VK Y
     (24) 

,L LV I  are the voltage and current vectors at consumer nodes 

,G GV I  are the voltage and current vectors at generator nodes 

,LL LGZ F , ,GL GGK Y  are the submatrices of H-matrix 

 

For any consumer nodes 
., Lj J   
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Alternatively,          
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From equation (23), a local indicator  jL  that is similar to the line model can be developed for each node j  
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L = Constant of nodes set 

G = generator nodes set 

For all nodes j , the condition for the indicator L , which describes the entire system stability is  
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Hence the major outcome of the theory discussed for stability to occur is 

 

L                           (34) 

 

3.2   Existing Voltage Collapse Prediction Methods 

i. Voltage Stability Index (LP): The line stability index proposed in [48] has a similar mathematical formulation to earlier 

line VSIs and basically defined as 

 Lp  =  
4RPr

[Vs cos(θ− δ)]2  ≤ 1                    (35) 

The LP defined in Equation (35) determines the condition of the transmission line and indicates instability limits. If the 

calculated value of Lp is more significant to the unity, the system approaches instability. The voltage collapses when 

the system exceeds the critical limits. 

ii. Fast Voltage Stability Index (FVSI): The Fast Voltage Stability Index (FVSI) [48] primarily considered the current 

through the line and then absolute roots of a receiving-end voltage is determined. This is usually formulated as 

FVSI =  
4Z2Qr

Vs
2X

                         (36) 

The line is in-transit to the instability limit if the FVSI value is adjacent to 1. With further increases in a stability index 

value, that line may encounter an unexpected voltage drop accompanying system collapse. 

iii. Voltage Stability Load Bus Index (VSLBI): Voltage Stability Load Bus Index (VSLBI) evaluates the voltage stability 

by employing PMU applications [49].  Considering the maximum power condition, this stability index is subject to a 

voltage-drop ΔVr over the transmission impedance Zr that is equivalent to load bus voltage Vr: 

ΔVr = Vr                           (37) 
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Accordingly, to approach the voltage collapse exposure during the constant power loads, the Voltage Stability Load 

Bus Index (VLSBI) can be represented by 

VSLBI =  
Vr

∆V
                         (38) 

If the obtained value of the VSLBI is more significant than the unity, then the system is considered stable; if the VSLBI 

is less than 1, then the system is unstable, and the system may collapse. 

 

4. RESULTS AND DISCUSSION 

This section presents the simulation results as well as the discussion of the results obtained using the two case studies of 

the standard IEEE 30-bus system and the Nigerian 28-bus 330kVgrid network.  

4.1   Case Study 1: Results of Power Flow on IEEE 30-Bus System 

In this section, we present the results of the MATLAB simulations conducted, on the IEEE 30-bus and the Nigerian 

330-kV system, to identify the weakest bus using the L-index methodology. The load flow analysis was initially performed 

on the IEEE 30-bus system to determine the voltage magnitudes at each bus and the line flow and losses in the network. 

The results are presented in Table 1 and Table 2. 

Table 1: Bus voltage magnitudes in the original IEEE 30-bus system 

BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) 

1 1.06 9 1.05 17 1.04 25 1.02 

2 1.04 10 1.04 18 1.03 26 1.00 

3 1.02 11 1.08 19 1.03 27 1.03 

4 1.01 12 1.06 20 1.03 28 1.01 

5 1.01 13 1.07 21 1.03 29 1.01 

6 1.01 14 1.04 22 1.03 30 0.99 

7 1.00 15 1.04 23 1.03   

8 1.01 16 1.04 24 1.02   

 
From Table 1, it can be observed that all thirty buses have voltage magnitudes within the statutory voltage limit of 0.95 - 

1.1 per unit (p.u). The lowest voltage magnitude is recorded at bus 30, which is 99% of the nominal voltage. 

Table 2: Line results for the 30-Bus IEEE network 

FROM TO P (MW) Q (Mvar) P (MW) Q (Mvar) Ploss (MW) Qloss (Mvar) 

1 2 177.78 -22.15 -172.31 32.67 5.46 10.52 

1 3 83.22 5.13 -80.41 1.96 2.81 7.09 

2 4 45.71 2.70 -44.61 -3.22 1.11 -0.52 

……………        

28 27 18.18 5.47 -18.18 -4.16 0.00 1.31 

28 8 0.58 -2.00 -0.58 -2.37 0.00 -4.37 

29 30 3.70 0.61 -3.67 -0.54 0.03 0.06 

TOTAL LOSS           17.5985 22.2444 

 

i. L-index analysis results 

To identify the weakest bus in the IEEE 30-bus system, the L-index analysis was performed by gradually increasing 

the active load on the system from 100% to 320% in 10% increments. The bus voltage magnitudes and L-index values 

were recorded at each load level as shown in Tables 3 and 4. 

Table 3: Bus Voltage results for the 30-Bus IEEE network at 320% loadability of active load power 

BUS 

NO V (P.U) 

BUS 

NO 

V 

(P.U) 

BUS 

NO 

V 

(P.U) 

BUS 

NO 

V 

(P.U) 

1 1.06 9 0.93 17 0.87 25 0.77 

2 0.99 10 0.89 18 0.83 26 0.72 

3 0.84 11 1.08 19 0.82 27 0.78 

4 0.83 12 0.91 20 0.84 28 0.87 

5 0.96 13 1.02 21 0.85 29 0.69 

6 0.88 14 0.87 22 0.85 30 0.63 

7 0.89 15 0.85 23 0.82   

8 0.96 16 0.88 24 0.80   
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Table 4: Load bus L-Index results for the 30-Bus IEEE network at 320% loading of active load 

LOAD BUS L-Index LOAD BUS L-Index LOAD BUS L-Index LOAD BUS L-Index 

3 0.068 14 0.307 21 0.87 28 0.094 

4 0.078 15 0.335 22 0.388 29 0.740 

6 0.066 16 0.286 23 0.416 30 0.950 

7 0.086 17 0.337 24 0.474   

9 0.165 18 0.420 25 0.517   

10 0.320 19 0.446 26 0.643   

12 0.202 20 0.419 27 0.485   

Table 3 shows the trend of bus voltage magnitudes as the system is subjected to increasing load levels. It can be 

observed that bus voltages decrease as the load increases, which is a common characteristic in power systems. Table 4 

shows the behaviour of the L-index values for each bus as the active power load increases from 100% to 320%. A lower L-

index value indicates a more stable bus, while a higher L-index value indicates a weaker bus and a closer proximity to 

voltage collapse. From Table 4, it is evident that bus 30 has the highest L-index curve, followed by buses 29 and 26. This 

implies that bus 30 is the weakest bus in the system, followed by bus 29 and bus 26, as they have the highest L-index 

values. The L-index values for bus 30, 29, and 26 at 320% loading are 0.95, 0.74, and 0.643, respectively. 

ii. Result after applying STATCOM device 

To assess the effectiveness of using STATCOM devices to enhance voltage stability and mitigate the risk of voltage 

collapse, 5 MVar STATCOM devices were incorporated at buses 26, 29, and 30 while ensuring that the voltage limits 

(0.95 - 1.1 p.u) were not exceeded. The load flow and L-index analysis were performed again with the STATCOM devices. 

 

Table 5: Voltage magnitude at buses 26, 29, and 30 before STATCOM 

LOAD BUS 26 29 30 

L-Index 0.068 0.740 0.950 

 

Table 6: Bus results for the 30-Bus IEEE network with STATCOM at buses 26, 29 and 30 

BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) 

1 1.06 9 1.05 17 1.04 25 1.06 

2 1.04 10 1.05 18 1.03 26 1.06 

3 1.02 11 1.08 19 1.03 27 1.07 

4 1.01 12 1.06 20 1.04 28 1.02 

5 1.01 13 1.07 21 1.04 29 1.07 

6 1.01 14 1.05 22 1.04 30 1.0608 

7 1.00 15 1.04 23 1.04   

8 1.01 16 1.05 24 1.04   

 

Table 7: Line flow and losses with STATCOM devices at buses 26, 29, and 30 

FROM TO P (MW) Q (Mvar) P (MW) Q (Mvar) Ploss (MW) Qloss (Mvar) 

1 2 177.717 -22.134 -172.258 32.646 5.460 10.513 

1 3 83.265 4.373 -80.458 2.701 2.807 7.074 

2 5 82.921 1.709 -79.931 6.448 2.990 8.157 

……………..        

28 8 0.348 0.807 -0.342 -5.181 0.006 -4.375 

12 13 0.000 -7.963 0.000 8.042 0.000 0.079 

11 9 0.000 14.302 0.000 -13.939 0.000 0.363 

TOTAL LOSS           17.5826 21.7165 

 

Table 8: Bus voltage results for the 30-Bus IEEE network at 350% loading of the active power after applying STATCOM 

at buses 26, 29 and 30 

BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) 

1 1.060 7 0.864 13 1.021 19 0.770 25 0.755 

2 0.993 8 0.960 14 0.821 20 0.784 26 0.722 

3 0.763 9 0.894 15 0.805 21 0.806 27 0.766 

4 0.773 10 0.843 16 0.840 22 0.806 28 0.839 

5 0.960 11 1.082 17 0.829 23 0.775 29 0.694 

6 0.840 12 0.872 18 0.775 24 0.761 30 0.637 
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Table 9: L-Index results for the 30-bus IEEE network at 350% loading of the active load power after applying STATCOM 

at buses 26, 29 and 30 

LOAD BUS L-Index LOAD BUS L-Index LOAD BUS L-Index LOAD BUS L-Index 

3 0.085 12 0.243 19 0.546 25 0.602 

4 0.096 14 0.372 20 0.512 26 0.735 

6 0.078 15 0.407 21 0.469 27 0.557 

7 0.100 16 0.345 22 0.468 28 0.110 

9 0.196 17 0.407 23 0.504 29 0.826 

10 0.385 18 0.514 24 0.570 30 1.048 

Table 6 shows the bus results of the IEEE 30-bus power system after the integration of STATCOM at buses 26, 29, and 

30. It can be observed that the voltage profile has improved, and there is a slight reduction in active power loss from 

17.5985 MW to 17.5826 MW and reactive power loss from 22.2444 MVAr to 21.7165 MVAr as indicated in Table 7. 

The results presented in Table 8 shows that bus 30, followed by buses 29 and 26, have the lowest bus voltage magnitude 

trend as the active power load increases by 10% from 100% to 350% however, the voltage profile is improved compared to 

the case without STATCOM devices. The voltage magnitudes for these buses at 350% loadability are 0.637, 0.694, and 

0.722, respectively. 

Table 9 presents the Load Bus L-Index results versus loadability for the 30-Bus IEEE Network after incorporating the 

STATCOM devices. It shows the L-index values for each bus as the active power load increases by 10% from 100% to 

350%. Although the values of buses 30, 29, and 26 still have the highest L-index values, indicating that they are the 

weakest buses, their L-index values have improved compared to Table 4 where STATCOM devices were not applied. 

4.2   Case Study 2: Results of Power Flow on Nigerian 28-Bus, 330kV System 

In this section, we present the results of the MATLAB simulations conducted on the Nigerian 28-bus 330kV system to 

identify the weakest bus using the L-index methodology. The load flow analysis was initially performed on the Nigerian 

28-bus 330kV system to determine the voltage magnitudes at each bus and the line flow and losses in the network. The 

results are presented in Table 10 and Table 11. 

It can be seen from the simulation results presented in Table 10 that only bus 16 is out of the voltage limit range (0.95 - 

1.05 p.u), while Table 11 shows the line flow and losses in the Nigeria 28-bus system, with a total active power loss of 

93.84 MW and a total reactive power loss of -727.23 MVAr. 

Table 10: Bus voltage magnitudes in the original Nigerian 28-bus 330kV system 

BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) 

1 1.05 7 1.05 13 0.95 19 1.00 25 1.01 

2 1.05 8 1.03 14 0.97 20 1.01 26 1.03 

3 1.04 9 0.97 15 1.03 21 1.05 27 1.05 

4 1.01 10 1.01 16 0.90 22 0.96 28 1.05 

5 1.02 11 1.05 17 1.05 23 1.05   

6 1.04 12 1.03 18 1.05 24 1.05   

 

Table 11: Line results for the 28-bus system 

FROM TO P(MW) Q(Mvar) P(MW) Q 

(Mvar) 

Ploss (MW) Qloss (Mvar) 

1 3 137.36 100.82 -137.20 -102.90 0.16 -2.08 

1 3 137.36 100.82 -137.20 -102.90 0.16 -2.08 

2 8 330.17 32.64 -325.84 -23.43 4.33 9.22 

………        

27 25 375.00 29.34 -364.74 5.86 10.26 35.20 

28 5 375.00 223.81 -372.20 -213.13 2.80 10.68 

28 5 375.00 223.81 -372.20 -213.13 2.80 10.68 

Total Loss 93.84 -727.23 

i. L-index analysis results 

To identify the weakest bus in the Nigerian 28-bus 330kV system, the L-index analysis was performed by gradually 

increasing the active load on the system from 100% to 190% in 10% increments. The bus voltage magnitudes and L-index 

values were recorded at each load level as presented in Tables 12 and 13. 
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Table 12: Bus voltage results for the Nigerian 28-bus 330kV system at 190% loading of active load power 

BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) 

1 1.05 7 1.04 13 0.78 19 0.95 25 0.99 

2 1.05 8 0.95 14 0.81 20 0.97 26 1.01 

3 1.04 9 0.82 15 1.02 21 1.05 27 1.05 

4 0.91 10 0.93 16 0.78 22 0.90 28 1.00 

5 0.92 11 1.05 17 1.04 23 1.04   

6 0.96 12 1.01 18 1.05 24 1.03   

 

Table 13: Load bus L-Index results for the Nigerian 28-bus 330kv system at 190% loading of active load 

LOAD BUS L-Index LOAD BUS L-Index LOAD BUS L-Index LOAD BUS L-Index 

3 0.011 8 0.083 14 0.335 20 0.151 

4 0.117 9 0.277 15 0.106 22 0.357 

5 0.095 10 0.122 16 0.685 25 0.124 

6 0.092 12 0.057 17 0.006 26 0.080 

7 0.011 13 0.431 19 0.226   

Table 12 shows the bus voltage results versus loadability for the Nigeria 28-bus network as the active power load 

continuously increases by 10%. It can be observed that the base case result stops converging at a loadability of 

approximately 190% of the original active power load at all buses. Table 13 presents the load bus L-Index results versus 

loadability for the Nigeria 28-bus network as the active power load continuously increases by 10%. The L-Index values 

indicate that bus 16 has the highest L-Index, followed by bus 13 and bus 22, at a loadability of 190%. This implies that bus 

16 is the weakest bus in the system, followed by bus 13 and then bus 22. 

ii. Results after applying STATCOM device 

To assess the effectiveness of using STATCOM devices to enhance voltage stability and mitigate the risk of voltage 

collapse, 5 MVar STATCOM devices were incorporated at buses 13 and 16 while ensuring that the voltage limits (0.95 - 

1.05 p.u) were not exceeded. The load flow and L-index analysis were performed again with the STATCOM devices. 

After incorporating STATCOM devices at Bus 13 and 16 in the Nigeria 28-bus power system, the bus results and line 

results are presented in Tables 15 and 16, respectively. The bus results indicate improved voltage profiles, and the active 

power loss is reduced from 93.84 MW to 88.10 MW, while the reactive power loss is reduced from -727.23 MVAr to -

802.20 MVAr. The results presented in Table 17 show the bus voltage results for the Nigeria 28-bus network after 

applying STATCOM devices at Bus 13 and 16. It shows that the voltage profiles have improved compared to the base case. 

Table 14: Voltage magnitude at buses 13 and 16 before STATCOM 

LOAD BUS 16 13 

L-Index 0.685 0.431 

 

Table 15: Bus results for the Nigerian 28-bus 330kV system with STATCOM at buses 13 and 16 

BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) 

1 1.05 7 1.05 13 1.05 19 1.03 25 1.03 

2 1.05 8 1.04 14 1.03 20 1.02 26 1.03 

3 1.04 9 0.97 15 1.03 21 1.05 27 1.05 

4 1.01 10 1.02 16 1.04 22 0.97 28 1.05 

5 1.02 11 1.05 17 1.05 23 1.05   

6 1.04 12 1.04 18 1.05 24 1.05   

 

 

Table 16: Line flow and losses with STATCOM devices at buses 13 and 16 

FROM TO P(MW) Q(Mvar) P(MW) Q(Mvar) Ploss (MW) Qloss (Mvar) 

1 3 137.36 100.82 -137.20 -102.90 0.16 -2.08 

1 3 137.36 100.82 -137.20 -102.90 0.16 -2.08 

2 8 330.96 9.01 -326.67 -0.24 4.29 8.77 

……...        

27 25 375.00 2.64 -364.88 30.88 10.12 33.52 

28 5 375.00 218.31 -372.23 -207.90 2.77 10.41 

28 5 375.00 218.31 -372.23 -207.90 2.77 10.41 

Total Loss 88.10 -802.20 
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Table 18 presents the load bus L-Index results for the Nigeria 28-bus network after incorporating STATCOM at buses 

13 and 16. It can be observed that the L-Index results stop converging at a loadability of approximately 200% of the 

original active power load at all buses. The L-Index values show that bus 16, followed by bus 22, bus 9 and bus 14 now 

have the highest L-Index values, indicating relatively weaker buses. On the other hand, bus 9 has the smallest bus voltage 

magnitudes compared to other buses as the loadability increases. It is worth noting that the curves of bus 16, bus 22, bus 9 

and bus 14 have improved compared where STATCOM devices were not applied. 

Overall, the incorporation of STATCOM devices at buses 13 and 16 in the Nigeria 28-bus system has resulted in improved 

voltage profiles, reduced active and reactive power losses, and enhanced voltage stability. The L-Index values and bus 

voltage magnitudes provide valuable information about the vulnerability of specific buses and guide the implementation of 

corrective measures to mitigate voltage collapse risks. 

Table 17: Bus voltage result for the Nigerian 28-bus network at 200% loading of the active load power after applying 

STATCOM to buses 13 and 16 

BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) BUS NO V (P.U) 

1 1.05 7 1.03 13 0.86 19 0.98 25 1.00 

2 1.05 8 0.93 14 0.85 20 0.97 26 1.00 

3 1.04 9 0.74 15 1.02 21 1.05 27 1.05 

4 0.87 10 0.88 16 0.94 22 0.89 28 1.00 

5 0.88 11 1.05 17 1.03 23 1.03   

6 0.93 12 1.02 18 1.04 24 1.02   

Table 18: Load bus L-index results for the Nigeria 28-bus network at 200% loading of the active load power after applying 

STATCOM to buses 13 and 16 

LOAD BUS L-Index LOAD BUS L-Index LOAD BUS L-Index LOAD BUS L-Index 

3 0.012 8 0.090 14 0.303 20 0.156 

4 0.133 9 0.351 15 0.111 22 0.375 

5 0.107 10 0.143 16 0.490 25 0.117 

6 0.100 12 0.056 17 0.007 26 0.086 

7 0.012 13 0.367 19 0.206   

 

5. CONCLUSION 
In this study, the L-Index methodology was applied to assess voltage stability and identify the weakest buses in the 

IEEE 30-bus and Nigeria 28-bus power systems. The L-Index methodology effectively identified the weakest buses in both 

systems by correlating L-Index values with voltage magnitudes. Consistently, buses with the lowest voltage magnitudes 

and highest L-Index values were recognized as the weakest. Incorporating STATCOM devices at the weakest buses 

improved voltage profiles and reduced power losses while preserving the weak bus identification, affirming the L-Index's 

accuracy in predicting vulnerable buses. This study underscores the significance of voltage stability analysis and the 

effectiveness of the L-Index methodology in recognizing and addressing voltage instability problems. Identifying weak 

buses enables operators and planners to prioritize measures like installing reactive power compensation devices to boost 

voltage stability and prevent collapses. The utilization of the L-Index as a predictive tool has proven to be effective in 

assessing the proximity to voltage collapse and identifying potential instability risks in power systems. Additionally, the 

development of techniques for voltage stability enhancement based on the L-Index has shown promise in mitigating 

voltage instability and improving grid resilience. 

Building upon the findings of this research, the following recommendations are made for further studies: 

i. Integration with Control Strategies: Explore the integration of L-Index-based techniques with advanced control 

strategies, such as adaptive voltage control, reactive power optimization, and load shedding schemes. By combining 

predictive analysis with proactive control actions, voltage stability can be enhanced more effectively, especially in 

dynamic and rapidly changing operating conditions. 

ii. Real-Time Implementation: Investigate the feasibility of implementing L-Index-based techniques in real-time 

monitoring and control systems for electrical power systems. Develop algorithms and software tools that can 

continuously assess voltage stability and provide timely recommendations for corrective actions to prevent voltage 

collapse and ensure grid reliability. 

iii. Resilience Assessment: Expand the scope of research to include resilience assessment and enhancement strategies in 

addition to voltage stability. Consider the interdependencies between voltage stability, transient stability, and 

resilience to extreme events, such as natural disasters or cyber-attacks, and develop comprehensive approaches for 

enhancing overall grid resilience. 
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