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ABSTRACT 

Road traffic accident is the major phenomena of the world as well as our country, Ethiopia which is from the 
low-income countries. Statistical modeling for count response variables is a primary interest in, insurance, and 
other areas. The main objective of this study is used to identify the most appropriate count regression model to 
fit the number of human deaths per road traffic accident (RTAs). The data for this study get from Addis Ababa 
Traffic Control, and Investigation Department (AATCID), daily basis recorded from July 30, 2013 to July 29, 
2014. The difficultyassumption of Poisson regression model shifts to look for extended models like the negative 
binomial model, zero inflatedPoisson, and zero-Inflated Negative binomial regression models. Specifically, 
traffic accidents generate count response variables with an invalid assumption of Poisson distribution such 
thatthe variance and mean of human death per road traffic accident are (0.58) and (0.36), and the over-
dispersion parameter under the negative binomial was detected to indicate the existence of over-dispersion 
implies ZIP (or ZINB) model is favored over the Poisson (or NB) model, respectively, by using Vuong test. By 
using the goodness of fit model criteria like LRT, AIC, and BIC zero-inflated Poisson (ZIP) is the most fitted 
model for road traffic accident dataset.Therefore, quarter of year, slope of road, age of driver, vehicle type and 
ownership, time of accident, and type of accident are found statistically significant factors at α = 0.05fornumber 
of human death per road accidents. 

Keywords: Negative binomial regression, Traffic accidents, Zero inflated poisson regression, Zero inflated 
negative regression. 

 
INTRODUCTION 

Road traffic accident is among the top major 
problem currently in the world. About 1.35 million 
people lost each year due to road traffic accidents. 
Approximately about 90% of the fatalities death on 
the road’s accident occurred in low- and middle-
income countries, even though around 54% of the 
vehicles are exist in these regions(WHO, 2019, 
May). According to different scholars, over half of 
pedestrians killed and seriously injured in Great 
Britain in 2015 were involved in crashes at junctions. 
The pedestrian actions and behavior factors which 
contributed to pedestrian casualty crashes were 
found to be between 1.6 and 2.8 times the 
frequencies of driver actions and behavioral 
factors(Downey et al., 2019). The burden of road 
traffic accident in Africa is the most Agony issue for 
developing countries like Ethiopia (Fernando et al., 
2017). Most of the vehicles that use for various 
activities are serving for long time. According to 
WHO reports, on average more than one person die 
per day due to road traffic accident. Addis Ababa, 

the capital city of Ethiopia, has a large-scale shortage 
of the transportation problem as well as crowded 
traffic.  

Statistical modeling for count response variables is a 
primary interest in several fields in the real world. 
Those interested fields stated by several researchers 
like public health (Windmeijer & Cameron, 1996), 
insurance ( Jones et al., 1991; Yau & Lee, 2001; Yip 
& Yau, 2005; Abegaz et al., 2014), epidemiology 
(Preisser et al., 2012), psychology (Famoye & Singh, 
2006), and many other research areas since most of 
the variables response countable such as the number 
of infected person per day, the number of accidents 
occurred per day, the number of patients admitted 
per day, and the number of people who took 
guidance per hour, respectively are the practical 
example of applications of count regression 
modeling in real-world (Lambert, 1992; Kibria & 
Research, 2006).According to the studies conducted 
by Lambert (1992) and Wagh and Kamalja (2018) 
Poisson regression model is the most regularly used 
for handling such count data. But there 
commendations of the scholars are restricted by the 
validation of Poisson regression. *Corresponding author: getahun0514@gmail.com 
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The Poisson distribution assumed for validation that 
both the variance and mean are equal. Nevertheless, 
the validation of assumption may violate in many 
real applications subsequently the data is usually 
over dispersed. Various researchers have 
recommended the appropriateness of the Poisson 
model for predicting accident rates at intersections or 
roads (Dean & Lawless, 1989; Jones et al., 1991; 
Miaou & Lum, 1993; Berhanu, 2004; Malyshkina & 
Mannering, 2010). These studies outstrip the fact 
that incidents are necessarily discrete, often 
interrupted, and more likely to be accidental events. 
One important assumption in the Poisson model that 
the average value for outcome variable need to be 
equal to its variance (i.e., if the random response 
variable is denoted, Y, then,E(y୧ ) = var(y୧) ). If 
this assumption is no longer valid, then standard 
errors, usually calculated with the succor of the ML 
method are biased and the test statistic got from the 
model is wrong (Ismail & Zamani, 2013; Trivedi & 
Cameron, 2013; Wagh & Kamalja, 2018). According 
to (Trivedi & Cameron, 2013) the redundant zeros 
condition in the data set leads to an incorrect 
estimate which may the evidence of over-dispersion. 
To treat excess zeros, we should ZIP model 
(Jansakul & Hinde, 2002; Lambert, 1992; Lawal & 
Quantity, 2012) regression models that the 
probability of zero-defect state and the meanof an 
imperfect state (nonzero defect state) be subject to 
on the covariates (Chin & Quddus, 2003; Hasan & 
Sneddon, 2009; Trivedi & Cameron, 2013; 
Desjardins, 2016;). The main objective of this study 
is used to identify the most appropriate count 
regression model to fit the number of human deaths 
per road traffic accident (RTA). Specifically, it is 
used to check whether the road traffic accident data 
contains overdispersion and/or zero-inflation cases, 
and to select the appropriate count regression model 
to predict road traffic accidents among the 
candidate’s models that are Poisson, Negative 
Binomial, Zero-Inflated Poisson and Zero-Inflated 
Negative Binomial regression models. 

STATISTICAL METHODOLOGY  

Data source: 

The data used for this study was accessed from 
Addis Ababa Traffic Control, and Investigation 
Department (AATCID), Addis Ababa on daily basis 
recorded of by traffic on road from July 30, 2013 to 
July 29, 2014. 

Analysis methodology: 

Count regression models had been extensively 
utilized in statistics to model response variables that 
are assumed to be countable. The Poisson 
distribution has dramatically restricted assumption 
should be checked out the expected value of the 
response variable is equal to its variances. In 
practice, this restriction does not confirm, that 
variance is greater than the mean, which described as 

overdispersion. It implies that the Poisson regression 
isn't adequate. Due to the failure of the Poisson 
distribution, the analysis looks over other 
alternatives, Negative Binomial regression (NBR) 
which account for overdispersion problem and 
variables with excess zero and/or zero-inflated 
count, for the reason that extra zeros are the cause of 
smaller expected value than the variance. In other, 
the existence of excess zero may the cause of 
overdispersion ( Poston Jr & McKibben, 2003; 
Trivedi & Cameron, 2013; Desjardins, 2016) 
recommended to Zero-Inflated candidate models 
such as zero-inflated Poisson (ZIP) or zero-inflated 
Negative binomial (ZINB). Therefore, the candidate 
models for this study were Poisson (PR), Negative 
binomial (NBR), zero-inflated Poisson (ZIPR), and 
ZINB Regression Models. The LRT and Wald used 
to test the parameter of the overdispersion and 
coefficients of the estimated regression models 
(Trivedi & Cameron, 2013; Desjardins, 2016; Wagh 
& Kamalja, 2018).  

Poisson Regression (PR) Model: 

For an independent sample of ݊ pairs of 
observations (ݕ ,(ݔ, ݅ ∈ 1,   2,   … ,   ݊, where ݕ 
denotes “the number of events that occurred” and ݔ 
is the value of explanatory variables for the ݅௧ 
subject(Lambert, 1992). Assume ݕ~ܲ݊ݏݏ݅(ߤ),
݅ = 1, 2, … ,݊ then the probability density function of 
Poisson accidental variables, ܻ, is given by 

(ߤ|ݕ)ܲ = షഋఓ
௬!

ݕ   , = 0, 1, 2, …     (1). 

where  ߤ > 0, represents the expected number of 
occurrences in a fixed time. The variance and mean 
for the Poisson regression model is given as follows: 

  E(y୧) = Var(y୧) = ߤ  (1.1)      

Overdispersion 

When the variance of the count response variable 
exceeds the mean, ܸܽݎ[ݕ] > ,[ݕ]ܧ  ݅ = 1, 2, 3, … ,݊ 
a feature of overdispersion will occur(Dean & 
Lawless, 1989; Perumean-Chaney et al., 2013). As a 
result, the overdispersion trouble occurs, the Poisson 
maximum likelihood estimator received may be 
wrong (Trivedi & Cameron, 2013). 

ߜ :ܪ = 0 (there is no overdispersion implies equi-
dispersed), versus  

ߜ :ܪ > 0 (overdispersion exist in the dataset) 

Negative Binomial Regression (NBR) Model 

Random variable ܻ, ݅ = 1, 2, 3, … ,݊ is negatively 
binomial distribution count with parameter µ and ߜ 
the probability density function is expressed as 
follows (Lambert, 1992): 

;ݕ)݂ µ , (ߜ =
௰ቀ௬ାଵ ఋൗ ቁ

௰ቀଵ ఋൗ ቁ௬!
(1 + (ߤߜ 

ିଵ
ఋൗ ቀ1 + ଵ

ఋఓ
ቁ
ି௬

, ݕ  =

0, 1, 2, …  (2)  
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with mean and variance, respectively, given by: 

)ܧ ܻ)  = ߤ   = ,൯ߚ்ݔ൫ݔ݁  and  ܸܽݎ( ܻ)  = + (1ߤ 
(ߤߜ  … … … … … (2.1)  

The term  ߜ (read as delta) is called the dispersion 
parameter. If the dispersion parameter closes to null 
(δ → 0), then the NBR model reduces to the 
classical Poisson regression model. The likelihood 
function of the NBR model based on a sample of ݊ 
independent observation is given by: 

ℓ൫µ , ;ߜ ൯ݕ  = ∏ ቆ
௰ቀ௬ା

భ
ഃቁ

௰ቀభഃቁ௬!
൫1 + µ൯ߜ 

ିଵ
ఋൗ ൬1 +

ୀଵ

ଵ
δµ
ቁ
ି௬ቇ… … … … …  (2.2)  

and the log-likelihood function is 

ℒ = ℓ(µ  ݈݃ ,  (ݕ;ߜ

= ∑ ቊ−log(ݕ!) + logቆ
௰ቀ௬ା

భ
ഃቁ

௰ቀభഃቁ
ቇ − ଵ

ఋ
log(1 +

ୀଵ

(µߜ  − logݕ ቀ1 + ଵ
ఋஜ
ቁቋ  … … … … … (2.3)  

where the following expression can be used to 
simplify the equation: 

௰ቀ௬ାଵ ఋൗ ቁ

௬!௰ቀଵ ఋൗ ቁ
= ∏ ቀݕ + ଵ

ఋ
− ݇ቁ௬

ୀଵ = ∏௬ିߜ ݕߜ) −
௬
ୀଵ

݇ߜ + 1) … … … … … (2.4)  

Then 

= ∑ ቄ−log(ݕ!) + ∑ ൫log(ݕߜ − ݇ߜ + 1)൯௬
ୀଵ −

ୀଵ

ቀݕ + 1
ൗߜ ቁlog(1 + (µߜ  +

log(µ)ቅݕ   … … … … …  (2.5)  

where ߤ =  (ߚ்ݔ) ݔ݁

ℒ = ∑ ቄ−log(ݕ!) + ∑ ൫log(ݕߜ − ݇ߜ + 1)൯௬
ୀଵ −

ୀଵ

ቀݕ + 1
ൗߜ ቁlog(1 + ߜ exp(ݔ்ߚ)) +

ቅߚ்ݔݕ  … … … … … (2.6)  

According to (Borgan, 1984; Lloyd-Smith, 2007)the 
likelihood equations to estimate ߚand ߜ are obtained 
by taking the partial derivatives of the log-likelihood 
function and set them equivalent to zero. Thus, we 
obtain the first derivatives of the log-likelihood 
function, ℒ, respecting the underlying parameters are 
obtained as follows: 
డℒ
డఉ

= డℒ
డஜ

డஜ
డఉ

=  ∑ ቂ௬ିஜ
ଵାఋஜ

ቃ
ୀଵ ݔ ,  

డℒ
డఋ

= ∑ ቊ−ିߜଶ∑ ଵ
(ାభഃ)

+ ଶିߜ log(1 + (µߜ +ିଵ
ୀ


ୀଵ

௬ିஜ
ఋ(ଵାఋஜ)ቅ

… … … … … (2.7)  

 

Zero-Inflated Poisson Regression (ZIPR) Model: 

The zero-inflated Poisson distribution assumed for 
two distinct underlying states. The first state 
߱produces for only zeros, while 1 − ߱to a 
standard Poisson count with mean µ and hereafter a 
chance of extra zeros.  In general, the first state is 
called structural zeros and the other state from the 
Poisson model is called sampling zeros (Lambert, 
1992; Jansakul & Hinde, 2002; Lawal & Quantity, 
2012). This two-state process gives the following 
probability mass function (pmf): 

                            ܲ( ܻ = (ݕ =

൝
߱ + (1 − ߱)݁ఓ ݕ     , = 0          

(1 − ߱)
షಔஜ

௬!
ݕ     , = 1, 2, 3, …           (3)  

where 0 ≤ ߱ ≤ 1, and ߤ. The parameter ߤ and ߱ 
depends on the covariates ݔ and ݖ, respectively.  

The mean and the variance of the ZIP regression 
model, respectively, are: 

(ݕ)ܧ = µ(1 − ߱), and ܸܽݎ(ݕ) = µ(1 −
߱)(1 + ߱µ).                      

 The log-likelihood function, ℒ = ℓ(µ,߱;ݕ) for 
ZIP model is assumed below:  

ℒ = ∑ ൛ܫ(௬ୀ)log[߱ + (1 − ߱)݁ݔ(−µ)] +
ୀଵ

log(1](௬வ)ܫ −߱) − µ + log(µ)ݕ −
log(ݕ!)]} … … … … … (3.1)  

The first derivative the log-likelihood function 
regarding the underlying parameter is: 
డℒ
డ ఊೝ

= డℒ
డ ఠ

డఠ
డ ఊೝ

  

= ∑ (௬ୀ)ܫ 
௫൫௭

ఊ൯
௫൫௭

ఊ൯ା௫൫ି௫൫௫
ఉ൯൯

൨ ݖ −
ୀଵ

∑  ௫൫௭
ఊ൯

ଵା௫ (௭
ఊ
൨

ୀଵ ,ݖ … … … … …  (3.2)  

ݎ = 1, 2, … ,  ݍ
డℒ
డ ఉೕ

= డℒ
డ ఓ

డఓ
డ ఉೕ

  

                =

∑ (௬ୀ)ܫ 
ି௫൫௫

ఉ൯௫൫ି௫൫௫
ఉ൯൯

௫൫௭
ఊ൯ା௫൫ି௫൫௫

ఉ൯൯
൨ ݔ +

ୀଵ

∑ ݕ](௬வ)ܫ − [(ߚ்ݔ)ݔ݁
ୀଵ ݔ , (3.3)  

݆ = 1, 2, 3, … ,   

Zero-Inflated Negative Binomial Regression 
(ZINBR) Model: 

The ZINBR model is proposed to demonstrate 
variable with excess zeros and overdispersion. The 
researches ( Lambert, 1992; Jansakul & Hinde, 
2002; Li et al., 2019) demonstrated that the ZINBR 
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model gives an appropriate fit for the over dispersed 
response variable as compared and the ZIP model.  
)   ܻ = (ݕ =

൞
߱ + (1 − ߱)(1 + (ߤߜ 

ିభഃ,    ݕ = 0                                           

(1 − ߱)
௰ቀ௬ାଵ ఋൗ ቁ

௬!௰ቀଵ ఋൗ ቁ
(1 + (ߤߜ 

ିଵ
ఋൗ ቀ1 + ଵ

ఋఓ
ቁ
ି௬

, ݕ > 0
… (4)  

where ߜ > 0, is a dispersion parameter. 

The variance and the mean of the ZINBR model are:  

(ݕ)ܧ = (1ߤ − ߱),ܸܽݎ(ݕ) = (1ߤ −߱)(1 + ߱ߤ +

… (ߤߜ … … … … (4.1) 

The parameters ߤ and ߱depend on covariates 
ݖ  andݔ , respectively. We can write the model as  

log(ߤ) = log   ,ߚ்ݔ  ቀ ఠ

ଵିఠ
ቁ = … ߛ்ݖ … …         (4.2)  

The log-likelihood function (Borgan, 1984; Lloyd-
Smith, 2007),ℒ = ℓ(δ, µ୧,ω୧; y୧) for ZINBR model 
is  

ℒ = ∑ ൝ܫ(௬ୀ)log ቀ߱ + (1 −߱)(1 + (ߤߜ 
ିଵ

ఋൗ ቁ +
ୀଵ

log൭(1(௬வ)ܫ −߱)
௰ቀ௬ାଵ ఋൗ ቁ

௬!௰ቀଵ ఋൗ ቁ
(1 + (ߤߜ 

ିଵ
ఋൗ ቀ1 +

ଵ
ఋఓ
ቁ
ି௬

൱  ൡ… … … … … (4.3)  

since 

௰ቀ௬ାଵ ఋൗ ቁ

௬!௰ቀଵ ఋൗ ቁ
= ∏ ቀݕ + ଵ

ఋ
− ݇ቁ௬

ୀଵ = ௬ିߜ ∏ ݕߜ) − ݇ߜ +௬
ୀଵ

1) … … … … … (4.4)  

Furthermore, the log-likelihood function can be 
written as 

ℒ =

∑ (௬ୀ)ܫ ቂlog ቀ߱ +
ୀଵ

(1 − ߱)(1 + (ߤߜ 
ିଵ

ఋൗ ൯ቃ + (௬வ)ܫ ∑ ቂlog(1 − ߱) −
ୀଵ

log(ݕ!) + ∑ log(ݕߜ − ݇ߜ + 1) − ቀݕ + ଵ
ఋ
ቁ log(1 +௬

ୀଵ

(ߤߜ  + ݕ log(ߤ)ቃ     (4.5)  

Tests for the Comparison of the Models 

a) Tests for Comparison of Nested Models: 

Likelihood-Ratio Test (LRT): 

The LRT is used to evaluate the adequacy of two or 
more than two nested modelings. It compares the 
maximized log -likeliness value of the full model 
and reduced model (Anisimova & Gascuel, 2006). 

For illustration, the null hypothesis can be stated as 
the overdispersion argument is equal to zero (i.e. the 
Poisson model can be fit well the information) 
versus the option hypothesis can be stated as the 
overdispersion parameter is different from zero (i.e. 
the data would be better fitted by the NB regression). 
The likelihood-ratio test is given by: 

ܴܶܮ = 2(ℒ − ℒ) … … … (5)  

where ℒ and ℒ୭ are the log-likelihood of models 
under the null and alternative hypotheses, 
respectively.   

b) Test for Comparison of Non-nested Models:  

Vuong’s Test: 

Assume that ଵܲis the predicted probability of the ZIP 
model (or ZINB model) and ଶܲ is the predicted 
probability of the Poisson model (or NBR model) of 
an observed count for case i, the relationship 
between the likelihood-ratio test can be defined as 
follows: 

݉ = ቂభ(௬|௫) ݈݃
మ(௬|௫)

ቃ  … … … (6)  

Hence, the Vuong’s test under the null hypothesis is 
given by:  

ܸ =
√ቀ

భ

∑ 

సభ ቁ

ට(భ∑ (ିഥ )మ
సభ

 … … … (6.1)  

For a large sample size and under the null hypothesis 
the test statistic V has the standard normal 
distribution at ߙ level of significance. The ZIP (or 
ZINB) model is favored over the Poisson (or NB) 
model, respectively. On the basis of Vuong (1989), 
if the calculated value of the Vuong test is positive 
and high (ܸ > 1.96) vice versa, and the two models 
are equivalent when |V|<1.96. 

Model Fitting Test (Goodness of Fit of the Model) 

In this study, to select the appropriate fitted model, 
which fits the data well was done using the 
likelihood-ratio test (LRT), Akaike information 
criteria (AIC) and Bayesian information criteria 
(BIC) according to the recommendation of scholars 
Archer and Lemeshow (2006). The formula is given 
as: 

ܥܫܣ = −2ℒ + 2݇, … … … (7)  

where ℒ is the log-likelihood of a model that will 
compare with the other models and k is the numeral 
of parameters including the intercept. On the other 
side, BIC is given by, 

ܥܫܤ = −2ℒ + … (݊)݈݃݇ … … (8)  

where ℒ is the log-likelihood of a model that will 
compare with the other models, n is dimensions of 
observation, and k is the numeral of parameters 
including the intercept. 
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The model which has the minimum value of AIC 
and BIC is the most appropriate fitted model to the 
dataset.  

RESULT OF

As shown in Table 
per road traffic accident (0.58) was greater than its 
mean (0.36). In this descriptive value of the response 
variable namely number of human deaths
accident dataset indicated the plausibility of existing 
overdispersion and hence the Poisson model was not 
appropriate to fit the road traffic accident data. 
Additional inspection of the data also indicated the 
existence of an excess number of zeros (
the shape of the curve is right
actual test of overdispersion is in negative binomial 
stage of model constructing teat is delta is 
significantly different from zero (

Even though, 
variables that we used for these models for Poisson, 
Negative binomial, zero inflated Poisson, and 
negative binomial models, are statistically 
significant factors for the number of human death 
per accident at three levels of sig
and 10%). But then again, the standard error of the 
parameter of the variables is slightly different which 

leads to select the appropriate counting data models 
for such a traffic accident dataset to predict the 
finding model for it. In th
models tried to incorporate the minimum value of 
standard error of the estimated parameter. 

The zero-inflated model was proper to fit the number
of human death per accident dataset because of the 
presence of excess zero in the d
of the Poisson model assumption that is the mean is 
smaller than the variance of the number of human 
deaths per RTAs.

DISCUSSION

Even though the Poisson regression model 
considered as baseline for analysis count data 
(Lambert 1992
assumption of Poisson
of human death per road traffic accident dataset is 
invalid for this study, which is consistent with the 
studies conducted by
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Lambert 1992; Wagh 

assumption of Poisson regression model for number 
of human death per road traffic accident dataset is 
invalid for this study, which is consistent with the 
studies conducted by (Dean & Lawless, 1989; Jones 
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.36). In this descriptive value of the response 
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parameter of the variables is slightly different which 
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for such a traffic accident dataset to predict the 
finding model for it. In the case of like statistical 
models tried to incorporate the minimum value of 
standard error of the estimated parameter. 

inflated model was proper to fit the number
of human death per accident dataset because of the 
presence of excess zero in the data and the violation 
of the Poisson model assumption that is the mean is 
smaller than the variance of the number of human 

Even though the Poisson regression model 
considered as baseline for analysis count data 

Wagh & Kamalja 2018
regression model for number 

of human death per road traffic accident dataset is 
invalid for this study, which is consistent with the 

(Dean & Lawless, 1989; Jones 
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per road traffic accident (0.58) was greater than its 

.36). In this descriptive value of the response 
variable namely number of human deaths per 
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overdispersion and hence the Poisson model was not 
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skewed Fig. 1. The 
actual test of overdispersion is in negative binomial 
stage of model constructing teat is delta is 

Appendix 1). 
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Negative binomial, zero inflated Poisson, and 
negative binomial models, are statistically 
significant factors for the number of human death 

nificance (1%, 5% 
and 10%). But then again, the standard error of the 
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leads to select the appropriate counting data models 
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dataset. 

After all, different model selection criteria were 
considered like the likelihood
Akaike information’s criterion (AIC) and Bayesia
information’s criterion (BIC) 
2006)to detect the furthermost fitted model. For non
nested models such

versus NB regression models were identified using 
the Vuong test statistic

Table 2 
among the candidates. First, the calculated value of 
the Vuong test (3.22) was greater than the 
hypothetical value (1.96) for
as the researcher 
that the ZIPR model was preferred to the PR model 
to estimate the number of human death due to road 
traffic accidents. In the second case, the comparison 
of ZINB versus NB models, the calculated value
the Vuong test is 9.08, revealed that the ZINB model 
was preferred to NBR model as similar techniques to 
Vuong (1989)

Finally, to compare the ZIPR and ZINBR models, 
AIC and BIC were used as shown in Table 3. 
Therefore, the ZIPR model is better
death pe
model. AIC and BIC values of ZIPR was found to be 
small as compared to other count models. 

As shown in Fig
choice than the other count models, since the 
predicted probability for the 
to the observed probability. From Fig
value of AIC, BIC, and Vuong criteria in Table 3, it 
can be observed that there was a difference between 
PR, NBR, ZIPR, and ZINBR models for the 
dataset(Lambert, 1992)
conclude that the ZIP model was more appropriate
than the ZINB model to fit the Addis Ababa road 
traffic accident dataset.     
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PR, NBR, ZIPR, and ZINBR models for the 

(Lambert, 1992)
conclude that the ZIP model was more appropriate
than the ZINB model to fit the Addis Ababa road 
traffic accident dataset.     

Table 1: Summary statistics for the number of 
human death due to road traffic accidents

Mean Variance
0.36 0.58 

Table 2: Vuong test statistics for Poison Vs 
ZIP, and Negative Binomial Vs ZINB

Tested nested 
models 
ZIP 
ZINB 

f Science and Technology Vol. 5, No. 1, 20

et al., 1991; Miaou & Lum, 1993).The existence of 
and excess zeros in the dataset 

modify to other suitable candidate models
Lawless, 1989; Perumean-Chaney et al., 2013)
negative binomial (NB), and zero inflation extended 

inflated Poison and Zero
Negative Binomial models) integrate to the accident 

After all, different model selection criteria were 
considered like the likelihood-ratio test (LRT), 
Akaike information’s criterion (AIC) and Bayesia
information’s criterion (BIC) (Archer & Lemeshow, 

to detect the furthermost fitted model. For non
as ZIP versus Poisson and

versus NB regression models were identified using 
the Vuong test statistic (Vuong, 1989)

showed the criteria to select the best model 
among the candidates. First, the calculated value of 
the Vuong test (3.22) was greater than the 
hypothetical value (1.96) for ZIPR versus PR model 

(Vuong, 1989). This value revealed 
that the ZIPR model was preferred to the PR model 
to estimate the number of human death due to road 
traffic accidents. In the second case, the comparison 
of ZINB versus NB models, the calculated value
the Vuong test is 9.08, revealed that the ZINB model 
was preferred to NBR model as similar techniques to 

Perumean-Chaney et al. (2013)

Finally, to compare the ZIPR and ZINBR models, 
AIC and BIC were used as shown in Table 3. 
Therefore, the ZIPR model is better

r road accident data than did the ZINBR 
model. AIC and BIC values of ZIPR was found to be 
small as compared to other count models. 

4, the ZIPR model was a better 
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his study concludes that the standard 
is not a proper model to fit the 

road traffic accident dataset. By using the goodness 
of fit model criteria like Likelihood
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(BIC), and Vuong test, 

Poisson (ZIP) is the most fitted model for 
road traffic accident dataset. Therefore, by using ZIP 
model quarter of year(specifically, fourth quarter 
(June, July and August) highly increased the 
numbers of human death, age of driver

ose age greater than 50 years are 
contribute to decrease the numbers of human death), 

(specifically bus and cargo) highly 
contribute to increase the number of human death  

Governmental vehicle contribute 
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his study concludes that the standard 
is not a proper model to fit the 

road traffic accident dataset. By using the goodness 
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(AIC), Bayesian 

Poisson (ZIP) is the most fitted model for 
Therefore, by using ZIP 

model quarter of year(specifically, fourth quarter 
(June, July and August) highly increased the 

(specifically 
ose age greater than 50 years are 

contribute to decrease the numbers of human death), 
(specifically bus and cargo) highly 

contribute to increase the number of human death  

vehicle contribute 

highly), time of acciden
large number of human death) as compared to their 
reference categories (See Table 5)
statistically significant factors at α = 0.05
of human death per road accidents
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Appendix 1: Parameter Estimation of Poisson, NB, ZIP, and ZINB Regression Models 

 
Parameters 

Poisson NB ZIP ZINB 
Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. Coef. Std. Err. 

Poisson model for non-zero part 
Month in quarter     

Q1 (Sep, Oct, Nov) (Ref.)        
Q2 (Dec, Jan, Feb) 0.2305 0.1296 0.2381 0.1354 0.2307 0.1437 0.2372 0.1468 

Q3 (Mar, Apr, May) 0.2675 0.1356 0.2738 0.1417 0.2676* 0.1241 0.2748 0.1266 
Q4 (Jun, Jul, Aug) 0.4111*** 0.1258 0.4109*** 0.1319 0.4122*** 0.1417 0.4119** 0.1362 

Age of driver         
18-30 (Ref.)        
31-50 -0.1252 0.0973 -0.1279 0.1026 -0.1253 0.1173 -0.1276 0.1149 
> 50 -0.3350* 0.1418 -0.3361** 0.1478 -0.3354*** 0.1342 -0.3364** 0.1336 

Vehicle type         
Minibus and automobile (Ref.)        

Bus 0.7101*** 0.1371 0.7256*** 0.1453 0.7121*** 0.1811 0.7358*** 0.1904 
Cargo 0.7627** 0.1020 0.7621* 0.1076 0.7629*** 0.1131 0.7631** 0.1109 
Others 0.4121* 0.1889 0.4332* 0.1988 0.4125* 0.1805 0.4334* 0.1783 

Ownership of vehicle         
Private (Ref.)        

Government 0.6997*** 0.1144 0.7053** 0.1184 0.6907** 0.1737 0.7060** 0.1662 
Organization 0.1092 0.1731 0.1092 0.1786 0.1096 0.2046 0.1094 0.2019 

Accident time         
Afternoon (Ref.)        
Morning 0.2360* 0.1113 0.2352* 0.1165 0.2366 0.1370 0.2345 0.1362 
Evening 0.4245* 0.1181 0.4250*** 0.1242 0.4252*** 0.1301 0.4255** 0.1264 

Night 0.5490*** 0.1737 0.5584* 0.1843 0.5491*** 0.1591 0.5583** 0.1631 
Accident type         
Vehicle to vehicle (Ref.)        

Vehicle to pedestrian 1.1731*** 0.1498 1.1758*** 0.1528 1.1741*** 0.1983 1.1764*** 0.1972 
Others 0.9989* 0.1877 0.9797* 0.1942 0.9992* 0.2586 0.9753* 0.2494 

Road inclination         
Direct (Ref.)        

Sloped road 0.4475*** 0.1434 0.4702*** 0.1548 0.4485*** 0.1531 0.4712*** 0.1547 
Education level of driver         

Elementary and below (Ref.)        
High School -0.1324 0.1152 -0.1229 0.1219 -0.1334 0.1621 -0.1218 0.1557 

Above high school -0.2698*** 0.1092 -0.2694*** 0.1152 -0.2702 0.1488 -0.2690 0.1470 
Intercept -2.9552*** 0.2187 -2.9684*** 0.2261 -2.9561*** 0.2568 -2.9691*** 0.2535 

Inflate/logistic part for zero count 
Injured vehiclecount     0.2526*** 0.1150 0.2255*** 0.1177 

Intercept     -1.71486** 0.6556 -1.72445*** 0.2369 
 0.7697 ***1.6970-   0.3623 1.6973-   (ࢾ)ܖܔ
 0.1410 0.1832   0.0664 ***0.1832   ࢾ

*** p-value< 0.001, ** p-value< 0.01, * p-value< 0.05 
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