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ABSTRACT
The aim of this paper is to evaluate two unified fractional derivative involving the product of generalized
Mittag-Leffler function and Appell function F5(.) . These integrals are further applied in proving two

theorems on Marichev-Saigo-Maeda fractional derivative operators. The results are expressed in terms of
generalized Wright function and generalized hypergeometric functions oFo) - Further, we point out also their

relevance.
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INTRODUCTION

The fractional calculus operators involving various
special  functions have found significant
importance and applications in modeling of
relevant systems in various fields science and
engineering, such as turbulence and fluid
dynamics, stochastic dynamical system, plasma
physics and controlled thermonuclear fusion,
nonlinear control theory, image processing,
nonlinear biological systems, astro-physics, and in
guantum mechanics. Therefore, a remarkably large
number of authors have studied, in depth, the
properties, applications, and different extensions of
various operators of fractional calculus. For
detailed account of fractional calculus operators
along with their properties and applications, one
may refer to the research monographs Miller &
Ross (1993); Samko et a. (1993) and Kiryakova
(1994).

The function E, (2) introduced and defined by
Mittag-L effler (1903) as:

o0

E@=Y——

mzn (a € (C), Re(a)>0
n=0
(Eq. 1.1)
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A further, two-index generalization of this function
was given by Wiman (1905) as:

o0 1 n
Ea’b(z)zgomz @,b e C), (Eq.12)

where Re(@a) > 0 and Re(b) > 0.

By means of the series representation a
generaization of Mittag-Leffler function (Eq. 1.2)
was introduced by Prabhakar (1971) as:

d N (@), n
B.o(2) = ;r(b n+g)n! z

where b,g,d € C (Re(b) >0). Further, it is an

(Eqg. 1.3)

entire function of order [Re(b)]* (see (Prudnikov
et al. (1972), p.7)).

Shukla and Prajapati (2007), (see (Srivastava and
Tomovski (2009)) defined and investigated the
function EY'(z) as

(Eq. 1.4)

wherea,b,g,d € G,
Re(a) >0, Re(b) >0, Re(g) >0,9e(0,)U N.
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Since the Mittag-Leffler function provides
solutions to certain problems formulated in terms
of fractional order differential, integral and
difference eguations, therefore, a number of useful
generalization of the this function has been
introduced and studied many authors. Recently,
Salim and Farg) (2012) has introduced and studied
anew generalization of the Mittag-L effler function,
by means of the power series:

Bl @) =Y

=T n+r)X)p

where n,r,d,xedc RN), R(r), Rd), RX),
p,g>0 suchthat g<Rn)+p.

(Eq. 1.5)

The generalized Wright hypergeometric function

oY q(2), for zeC, complex &,bje C, and
aj,bjeR (@j,bj#0;i=12,..,p;j=12..09) is
defined as below:

(&, ;)
W q(d= pyq{(b b. )];';4

H I'(g +aik) z
i=1

- .
[+ bk
j=1

Wright (1935) introduced the generalized Wright
function (Eqg. 1.6) and proved several theorems on
the asymptotic expansion of .y 4(2) (see (Wright
(1935); Wright (1940 @) and Wright (1940 b)) for
all values of the argument Z , under the condition:

Zb —Za >-1.

=1
The generaized hypergeometrlc function for
complex a, b, ecand by #0,-1,-- (i =1,2,---, p;

(Eq. 1.6)

0
k=0

j=12,---,q) isgiven by the power series Erdélyi
(1953).
(al)r (ap)r
Folu @i beia) = Z CYRSCO

(Eq. 1.7)
where for convergence, we have |Z| <1l if
p=q+1 and for any Z if p<q. The function

(Eq. 1.7) isa special case of the generalized Wright
function (Eq. 1.6) for

(Eq. 1.8)

:

A useful generalization of the hypergeometric
fractional integrals, including the Saigo operators,
Saigo (1978) and Saigo (1979), has been
introduced by Marichev (1974) (see details in
Samko et al. ((1993), p. 194, (10.47)) and later
extended and studied by Saigo and Maeda ((1998),
p.393, Eq. (4.12) and (4.13)), in term of any
complex order with Appell function F3(.) in the

kernel, as follows:

Let a,a’,b,b’,ge cand x>0, then the generalized
fractional calculus operators (Marichev-Saigo-
Maeda operators) involving the Appell function, or
Horn's F;-function are defined by the following

equations:

a=e20 1))

X '
= I (x—t)ptt2 Fs(a a'b,b:gil- l,lfTX) f(t)dt,
X

r(g)do
(R(g)>0). (Eg. 1.9)

i Fg(a a’, b,b’;g;l—%(,l—ljf (t)dt,
X

9(@)>0). (Eq.1.10)

(Daa b,b’ gf)( ) (I6a+—a ,—b’, —b, gf)( )
_(d]k(l_a —a,~b'+k, b, g+kf)( )

dx
R(@)>0; k=[R(Q)]+1. (Eq.1.11)

(Di,a’,b,b’,g f )(X): (I aa_’,—a —b',-b,—g f )(X)
:(_ijk(l (ﬁg_a ,—b’, —b+k, —g+k f )(X),

dx

RE) >0, k=[R@)]+1L. (Eq.1.12)

For the definition of the Appell function F5(.) the
interested reader may refer to the monograph by
Srivastava and Karlsson (1985); Erdélyi et al.
(1953) and Prudnikov et al. (1992). Following
Saigo (1978) the image formulas for a power
function, under operators (Eg. 1.9) and (Eg. 1.10),
are given by:

(I 8+a ,b.b’ 9y 1)(X)

_a_a'tg rr+g-a-a'-b,r +b'-a
:Xr aa+glr|: g

r+b’r +g—a-a'r +gfa'fb}'

(Eq. 1.13)
where R(r ) >max{0,%(@ +a’'+b -g),%(@’-b’)}and
R(g) >0.
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(| aa’\b,b’.gyr —1)()(): o —a-a'+g-1

1{1*" -b,1-r —g+a +a’, 1-r +a +b'—g}
1-r,1-r +a+a'+b'-g, 1-r +a-b
(Eq. 1.14)
where
R(r)<l+mn{R(-b),R@ +a’'-g),R(@ +b'-g)}
and R(g) >0.
The symbol occurring in (Eqg. 1.13) and (Eq. 1.14)
isgiven by: 1{ ab, C} _ T@TrOre) .
d, e f r(d)T(e)r(f)
The computations of fractional integrals (and
fractional derivatives) of special functions of one
and more variables are important from the point of
view of the usefulness of these results Purohit et
al. (2011); Purohit et a. (2012) and Suthar and
Purohit (2014) in the evaluation of generalized
integrals and the solution of differential and
integral egquations. Motivated by these avenues of
applications, here we establish two image formulas
for the generalized Mittag-Leffler function (Eq.
1.5), involving left and right sided operators of
Saigo-Meada fractional integral operators, in term
of the generalized Wright function.

2. MAIN RESULTS

In this section, we establish image formulas for the

generalized Mittag-Leffler function involving left
and right sided operators of Saigo-Maeda fractional
derivative operators (Eg. 1.11) and (Eq. 1.12); in
term of the generalized Wright function. These
formulas are given by the following theorems:

Theorem 21. Let a,a’,b,b’,g,u,r e C and
p,g>0, n>0, q<RN)+p be such that R(g) >0,
RUu) >-1, R(r +u) >max[0,iR(gfa -a’'-b),Rb fa)],
then there hold the formula:

N +a+a'—g—lr(x)

fog e o ez oo =X

(r—g+a+a’+b’, u),(r -b+a, u),d, q), (3, 1) "

x4Y 4 ‘(CX) .
(r—g+a+a’, u),(r —g+a+b',u),(r -=b, u),(x, p)

(Eq. 2.1)

Proof. Onusing (Eq. 1.5) and writing the function
in the series form, the left hand side of (Eq. 2.1),
leadsto

(pg ook ted a1

_ - (d)qn (C)un -a',-a,-b’',-b,~g;r +un-1
_ZF(n N+r)(X) pn (I ! )(X)

(Eq. 2.2)
Now, upon using the image formula (Eq. 1.13),

which is valid under the conditions stated with
Theorem 2.1, we get

(Da,a’,b,b’,g (t _1Er? X, q [Ctu])X ):

r+a+a{3 1F(X)2F(d+qn)F(r -g+a +a’'+b’'+u n)
r(d) C(x + pn)[(r —g+a +a’'+un)

I(r —b+a +un)Cd+n) ((ex)")"
I'(r+g+a+b'+un)I'(r —b +un) n!
(Eq. 2.3)
Interpreting the right-hand side of the above
equation, in view of the definition (Eq. 1.6), we
arrive at theresult (Eg. 2.1).

Theorem 2.2. Let a,a’,b,b’,g,u,r ,me € and n>0,
p.g>0, q<KnO)+p, suchthat K@) >0, Ru)>-1,
R(r —u)<1+min [R(b'), R(@-a -a’), R(@-a’'—b)] th
en the following formula holds true:

fpraroafrmeg gt =22

(r+m-a-a’+g, u), (r +m-a’-b+g, u),
(r +m+b’, u),(d,q), (1 1)

x5y 5 |(CX)7U .
(r+mu), (r+m-a-a'-b+
(r+m-a’+b’, u), (r u) x, p)

(Eq. 2.4)
Proof. By using (Eg. 1.5), the left had side of (Eq.
2.4), can be written as:

(De}a',t»tr,g(t mgdx. Cl[ct‘“])X )

_Zw: (d)qn(c)*m (I_a -a,-b'~b,~g;-r nkunkx)
4 (1 n+1)(X) pn '
(Eqg. 2.5)
which on using the image formula (Eq. 1.11),
arrive at
(D§~a'~bvb'v9[rr*maﬁ"ﬁ"g[a*]))(x)zw

r(d)

Xi I'r+m-a-a’+g+un)l(r +m-a’'-b+g+un)
0 I'(r+m+un) I'(r +m-a-a’'-b+g+un)
n=
O(r+m-a’+b’+unTd+gn) C(A+r)  ((c)™)"
r(r+m-a’+b’+un) '(r +un)l (x+ pn) nl
(Eq. 2.6)
Interpreting the right-hand side of the above
equation, in view of the definition (Eq. 1.6), we
arrive at theresult (Eq. 2.4).

On setting x = p = 1in (Eq. 2.1) and (Eq. 2.4), we
obtained the following particular case of theorems.
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Corollary 2.1. Leta,a’,b,b’,g,u,r e Cand n>0,
qg<®(n)+1 be such that %(g)>0%Ru)>-1,
R(r +u)>max [0,R(g-a —a’'—b),R(b -a)], then there
hold the formula:

r+a+a’'-g-1

(D22 02" 9 1,91t x) = X r(d)
(cx) }

(r-g+a+a’+b',u), (r —b+a,u),(d, q)
x¥3
(Eqg. 2.7)

Corollary 2.2. Let a,a’,b,b’,g,u,r ,me cand n>0,
p, >0, g<®n)+1 suchthat %(g)>0,%u)>-1,
R(r —u) <1+min[R(b"), Rg-a -a’), R(g-a’'-b)],
then the following formula holds true:

—-r-m+a+a’—g

(D220 fp-r -mgd apct-u ) = X r(d)

(r +m—a-a’+g,u), (r +m-a’'-b+g, u),
(r +m+b’, u), (d,q) u
x4 4 (ot
(r+mu), (r+m-a-a’ b+g u),
(r +m-a’+b’, u), (r,u)

(r—-g+a+a’,u), (r -g+a+b’,u),(r -b, u)

(Eq. 2.8)

3. SPECIAL CASES

In this section, we consider some special cases of
the main results derived in the preceding section.

If we set a =0 in the operators (Eq. 1.9) and (Eq.
1.10), then we have the following known identities:

) N
(D2 #20-hb'a g ) =(pabh 1 )x)
where the hypergeometric operators, appeared in

the right hand side are due to Saigo (1978), defined
as:

(Eq. 3.2)
(Eq. 3.2)

(abhfk ¥ =X =

(Eq. 3.3)
XJ' (x-1)3L Fl(a +b,-hiasl-tx)f (),
a,bh —
120 tho = o
xJ.w(t—X)a_lt_a_szl(a +b-hja;1-xit)f (t)ct.
(Eq.3.4)

D52 £))= 12 =" 1))

:[EJK(I carkobokashkg )(x)

dx
(Eg. 3.5)

R@)>0;, k=[R@)]+1.

(D20 )= (172 22 1) x)
:[ ng (I —a +k,—b—k, a+hf)()

(Eq. 3.6)

R@)>0 k=[R@)]+1.

Therefore, if weset a’'=0,b =-h, g=a and replace
a by a+b in(Eg.2.1)and(Eqg. 2.2), we get the

following results, involving the left and right hand
sided Saigo type derivative operators:

Corollary 3.1 Let a,b,h,d,x,r e Cand p,q,n >0,
q<Rn)+p, R(E=a)>0, R(r +a +h +b)>0, then
there hold the formula:

r+b—1r(x)

o5 v e e o=

(r +a+h+b,u), (d, q), (L 1), .
3"3{ (r +b,u), (r +h,u), x, p) ‘(CX) }'(Eq' 37

Corollary 3.2 Let a,b,h,dx,r,mec and p,q,n >0,
q<RM)+p, R(r —a)>max[R(b),R(@ +h)], then
the following formula hold:

—r —m+b
pa.bh (j-m-r dxq -u X r'x)
fprenfem e gter g = X

(r +m-b,u), (r +m+a +h,u),(d, q), (1, 1)
‘ cx)™

X 4
(r,u), (r +mu), (r +m-b+h, u),(x, p)

(Eq. 3.8)

On setting x = p = 1in (Eq. 3.5) and (Eq. 3.6), we
obtained the following particular case of
corollaries.

Corollary 3.3 Let a,b,h,d,x,r e Cand p,q,n >0,
q<Rn)+1, NR(-a)>0, R(r +a +h+b)>0, then
there hold the formula:
r+b-1
[og2" e el =2
] O e | € s
Corollary 3.4 Let a,b,h,d,x,r,me C and n>0,
p.g>0, q<RMO)+1, R(r —a)>max[R(b),R(@ +h)]
then the following formula hold:
(o2 o o e agar g = X
’ r(d)

(r +m=b,u), (r +m+a +h,u),(d, q) u
3 { (r,u), (r +mu), (r +m=b +h,u) ‘(CX) }

(Eg. 3.10)

Remark 1. If we set g=1in corollary 3.3, we

arrive at the known result given by Chaurasia and
Pandey ((2010), Eq. 5.1).
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Remark 2. If we set q=1, m=-a incorollary 3.4,

we arrive at the known result given by Chaurasia
and Pandey ((2010), Eq. 6.1).
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