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Abstract

Principal component analysis (PCA) based on singular value decomposition (SVD) of hydrological data was tested for water 
quality assessment. Using two case studies of waste- and drinking water, PCA via SVD was able to find latent variables which 
explain 80.8% and 83.7% of the variance, respectively. By means of scatter and loading plots, PCA revealed the relationships 
among samples and hydrochemical parameters which were also confirmed by factor analysis (FA).
 In the case of wastewater, these latent variables clearly displayed changes of water composition over time. Drinking water 
samples were clustered into four groups which were characterised by their typical water composition. On the basis of these 
results PCA was found to be a suitable technique for water quality assessment.
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Introduction

Real hydrochemical data sets contain not only important  
information useful for quality assessment and/or treatment tech-
nology but also confusing noise. Mostly, measured variables 
are not normally distributed, often co-linear or autocorrelated, 
containing outliers, erroneous or nonsense values. In order to 
reveal mutual dependence or logical structures of data, there 
are several chemometric procedures generally called as data 
mining techniques. Some of them are based on the reduction 
of data dimensionality, such as principal component analysis 
(Lavine, 2000; Jolliffe, 2002), factor analysis (Malinowski and  
Howery, 1980; Malinowski, 1991), independent component 
analysis (Comon, 1994), independent factor analysis (Attias, 
1998), generative topographic mapping (Bishop et al., 1998), 
etc.
 PCA is used to search new abstract orthogonal principal 
components (eigenvectors) which explain most of the data varia-
tion in a new coordinate system. Each principal component (PC) 
is a linear combination of the original variables and describes a 
different source of variation (information). The largest or 1st PC 
is oriented in the direction of the largest variation of the origi-
nal variables and passes through the centre of the data. The 2nd  
largest PC lies in the direction of the next largest variation, 
passes through the centre of the data and is orthogonal to the 
first PC, and so forth.
 Classical PCA is based on the decomposition of a covari-
ance/correlation matrix (Geladi and Kowalski, 1986) by eigen-
value (spectral) decomposition (EVD) or by the decomposition 
of real data matrixes using SVD. Compared with EVD, SVD is 
a more robust, reliable, and precise method with no need to com-
pute the input covariance/correlation matrix. From a numerical 

point of view, SVD is well known for its stability and conver-
gence, even in the ill conditioned problems.
 In general, SVD decomposes an arbitrary Matrix A (n x p) 
into three matrices:

 A = U S VT               (1)

where: 
 U (n x n) and VT (p x p) are orthogonal and normalised   
 matrices, i.e., UT U=I and VT V=I
 S (n x p) is a diagonal matrix with singular values in 
 decreasing order
 U columns are the left singular vectors
 VT rows are the right singular vectors.

Computing the SVD consists of finding the eigenvalues and 
eigenvectors of A AT and AT A, respectively. The U columns 
are eigenvectors of A AT and the VT rows are the eigenvectors of 
AT A. The powerful property of SVD is compressing the infor-
mation contained in A into the first few singular vectors which 
are mutually orthogonal and their importance rapidly decreases 
after the first columns/rows. The importance of each singular 
vector is given by the squares of nonnegative diagonal (singular) 
values of S.
 SVD has found a wide range of various applications in 
molecular dynamic and gene expression analysis (Wall et al., 
2003), information retrieval in a technique called Latent Seman-
tic Indexing (Berry et al., 1995), image processing (Zhang et al., 
2005), hearing noise filtering (Maj et al., 2001), spectral analysis 
(Safavi and Abdollahi H., 2001), and so forth.
 Multivariate statistical methods, encompassing cluster ana-
lysis, PCA, FA and discriminant analysis, have been success-
fully used in hydrochemistry for many years. Quality assess-
ment of surface water (Simeonov et al., 2003; Vega et al., 1998; 
Wunderlin et al., 2001), groundwater (Reghunath et al., 2002), 
and environmental research (Ceballos et al., 1998; Lambrakis 
et al., 2004) employing multicomponent techniques are well 
described in the literature.
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 The aim of this paper is to demonstrate PCA using SVD 
(PCA/SVD) of real hydrological data matrixes for mining infor-
mation which is important for wastewater and drinking water 
quality assessment. PCA/SVD was tested in two case studies:
• Wastewater screening before a treatment process.
• Classification of drinking water quality monitored in a city 

area.

Experimental

Hydrological data sets

The laboratory samples provide information intended for waste-
water monitoring and water quality mapping on an industrial 
city area. The use of PCA/SVD is demonstrated in two case 
studies:
• The results of chemical and physical parameters of wastewa-

ter, including municipal and domestic wastes, taken monthly 
on the inlet of a small biological wastewater treatment 
(BWWT) plant during five years. The determined param-
eters were selected with respect to the technology control.

• The results of chemical and physical analyses of drinking 
water samples taken from the city water network. Microbio-
logical parameters analysed contained zero values and thus 
were not included in the testing data set.

Water analyses

Water analyses, including sampling and preservation, were car-
ried out according to the actual standard ISO and EN methods. 
The measured parameters in wastewater were pH, biochemical 
oxygen demand within 5d (BOD), chemical oxygen demand by 
dichromate (CODCr), ammonium, nitrate, nitrite, phosphate, 
total phosphorus (TP), total nitrogen (TN), total suspended sol-
ids (TSS), and total dissolved solids (TDS).
 The parameters determined in drinking water include pH, 
ammonium, nitrate, nitrite, colour, turbidity, calcium, electri-
cal conductivity (EC), alkalinity, chemical oxygen demand by 
permanganate (CODMn), iron, and free chlorine (FC) carried 
out by means of the DPD method.
 Total nitrogen was determined by the Kjeldahl procedure and 
total phosphorus by peroxodisulphate oxidation. Ammonium, 
nitrate, nitrite, phosphate, free chlorine, and colour were deter-
mined by UV-VIS spectrometry (DR 4200, HACH). Turbidity 
was measured by nephelometry (Turbiquant 1500 IR, Merck). 
Calcium, alkalinity, and both types of chemical oxygen demand 
methods were determined volumetrically. The concentrations of 
iron were measured by flame atomic absorption spectrometry 
(Spectra AA200, Varian). TDS and TSS were determined gravi-
metrically after sample filtration through the 0.85 μm membrane 
filters. Electrochemical measurements were used for the deter-
minations of dissolved oxygen (DO) (Oxi 320, WTW), conduc-
tivity (Jenway 4310), and pH (pH 197, WTW).

Multivariate computations

The data matrices were prepared and processed in Excel 97. 
Their rows were constructed from the variables analysed in 
waters. There were no missing values in the data sets. SVD of 
Matrix A was executed using the standard MATLAB command 
svds(A,k) which computes the k largest values and associated 
singular vectors of Matrix A. Factor analysis and other statis-
tical calculations were performed by the software packages 
STATGRAPHIC Plus 5.0. The factor loadings were calculated 

using the Varimax rotation method.
 Before computation, the testing data were standardised in 
order to avoid misclassifications arising from different orders 
of magnitude of tested variables. Therefore the data were 
mean (average) centred and scaled by the standard devia-
tions:

Results and discussion

Case study I – SVD analysis of the municipal waste-
water data

Domestic wastewater samples (n = 68) were taken at the inlet 
of a small BWWT plant. This type of wastewater consists of 
fall-outs of household, humans, and commercial institutions. 
Information about the variability of the amount of organic and 
inorganic wastes is necessary for monitoring and optimising 
BWWT processes. PCA/SVD was performed on the data matri-
ces which summarised the given above chemical and physical 
determinations. The time fluctuation of waste water composi-
tion is demonstrated in Fig. 1a. Because of the very different 
scales of individual variables the data were centred and scaled 
by the standard deviations (Fig. 1b) and thus transformed data 
were treated by PCA via SVD.
 SVD splits the data matrix into several mutually independent 
singular vectors which describe the most variation in wastewater 
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Figure 1a 
Plot of the wastewater variables

Figure 1b 
Plot of the standardised wastewater variables
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composition. The number of singular vectors (SVs) can be esti-
mated from a scree plot demonstrated in Fig. 2. As it is shown in 
this figure, the singular values sharply decrease within the first 
three singular vectors and then slowly stabilise for the remaining 
ones which contain a great deal of noise and therefore are not 
useful. Taking into account the SVD theory, the singular values 

correspond to the square roots of the eigenvalues. That is why the 
variance of SVs can be expressed according to the equation:
                  (2)

where:
 sk is a singular value
 
SV1 to SV3 are 58.7%, 13.8%, and 8.3% (in sum 80.8%) of the 
data variance, respectively. Figure 3a shows that SV1 contains 
the greatest amount of information and in contrast with SV2 and 
SV3, which are higher in noise content, is smooth and exhibits 
the significant decrease of SV1 in the period from the samples 
21 to 58.
 The composition of the revealed singular vectors is shown 
from the loading plot in Fig. 3b. This plot is constructed from 
loadings calculated as correlations of the three selected singular 
vectors and all variables. The 1st SV contains mostly the param-
eters indicating organic wastes, such as BOD, CODCr, TN, 
ammonia, TP, phosphate, and nitrate which negatively correlate 
with other parameters as results of the ammonia biological oxi-
dation (nitrification). The 2nd SV reveals the nitrite influence as 
a nitrification intermediate product. The 3th SV is closely con-
nected with TDS mainly including inorganic salts.
 The individual SVs can be statistically tested as well as 
the original variables. SV1 exhibits normal distribution within 
the three seasons (Table 1). One can assume that the distinct 
decrease of SV1 in Fig. 3a was caused by the temporary reduc-
tion of domestic wastes likely from food or similar type of 
industry and/or civic amenities in this area. On the other hand, 
SV2 and SV3 behave in quite a different way. Their graphs show 
several accidental extremes. After their exclusion from the data 
both SVs were normally distributed.
 It is shown that these three singular vectors extracted from 
10 variables can give unbiased information about the significant 
seasonal changes in wastewater composition. Outliers of all sin-
gular vectors can be easily detected for further inspection.
 The PCA/SVD outputs were confirmed by factor analysis. 
In FA, each variable can be expressed as a linear combination of 
latent common factors and a single specific factor:

                  (3)
where:
 yi are the original variables
 Fj and ei are the common and specific (error) factors, respec-

tively
 αij and βi are their factor loadings

FA separates a correlation matrix into two matrices: a common 
factor portion and a specific factor portion. The main differ-
ence between PCA and FA is that while PCA is concerned with 
the total variation as expressed in the correlation matrix, FA is 
concerned with a correlation in the common factor portion. The 
goal of FA is not only to reduce the data dimensionality as well 

Figure 2 
Scree plot of the wastewater singular values

Figure 3a 
Time dependence of the wastewater singular values

Figure 3b 
Loadings plot of the wastewater singular values SV1 and SV2

TABLE 1
Some statistics of the first singular vector

Sample range Skewness Kurtosis Variance Average
S1 to S20 -0.4223 3.4694 0.006585 0.1635
S21 to S57 0.4762 2.9665 0.001211 -0.09396
S58 to S68 -0.003170 1.8657 0.0008249 0.02572
Note: No autocorrelation was detected. Normality was confirmed by 
statistical tests.
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as PCA but also to interpret the revealed common factors. The 
methods of factor computations including the detailed explana-
tion of FA are described in the literature cited above.
 It is obvious from the factor loadings in Table 2 that the 
results of FA and PCA are in a good agreement with each 
other.

Case study II – SVD analysis of the drinking water 
data

Drinking water samples (n = 253) were taken for the sake of 
regular screening of drinking water quality in a supply system. 
Drinking water is produced by treatment of ground- and surface 
water which are delivered and mixed together within the water 
network. Water composition was monitored using 12 chemical 
and physical variables. 
 The singular values and singular vectors were computed from 
this data matrix. The scree plot of singular values is displayed in 
Fig. 4. The four most significant singular vectors explain about 
83.7% of variance: 33.4% by SV1, 23.7% by SV2, 16.6% by SV3, 
and 10% by SV4. Mapping of samples is demonstrated in the 
loading plots of Figs. 5a; b. The four groups (I to IV) are clearly 
visible in Fig. 5b. For understanding of the sample clustering, 
the loading plots were prepared and they are demonstrated in 
Figs. 6a, b.
 It is shown in Fig. 6b that the four distinct groups of samples 

can be characterised by the corresponding groups of parame-
ters. The samples of Group I are typical in terms of their higher 
concentrations of nitrite and lower values of pH. This water 
composition exists in several sources of groundwater from 
which treated water is delivered into the network. Group II con-
tains the water samples with higher conductivity resulting from 
the higher concentrations of salts, such as chloride, sulphate, 
and calcium, which originate from the rest of the groundwa-
ter sources. Group III indicates samples of lower levels of free 
chlorine and the samples clustered into the group IV contain 
higher amount of iron and related parameters, such as turbidity 
and colour which give information about the pipeline system 
corrosion.
 The PCA/SVD loadings were confirmed by FA. The 
extracted factors are summarised in Table 3. The 1st factor can 
be called as the salt factor because it contains conductivity and 
inorganic salts. The 2nd factor is connected with dissolved iron 
ions and related turbidity and colour as given above. The 3rd  
factor is composed of nitrite and pH which is caused by the  
presence of drinking water treated from groundwater sources. 
The 4th factor represents free chlorine. It is obvious that all fac-
tors are consistent with the groups of parameters revealed by 
PCA/SVD.

TABLE 2
The wastewater factor loadings after the 

Varimax rotation
Parameters Factor 1 Factor 2 Factor 3
NH4 0.89674 0.00338 0.05005
BOD 0.92257 0.05436 0.13427
CODCr 0.92414 0.08960 0.16778
NO3 -0.78544 0.38009 -0.13785
NO2 0.14924 -0.81050 0.02769
PO4 0.59404 0.644383 0.21996
TN 0.87734 0.18772 0.07517
TSS 0.88812 0.12694 0.08705
TP 0.72241 0.47901 0.26946
pH 0.76232 -0.20536 0.01123
TDS 0.11555 0.04054 0.97975

Figure 4 
Scree plot of the drinking water singular values

Figure 5b 
Scatter plot of the drinking water singular values SV1 and SV3

Figure 5a 
Scatter plot of the drinking water singular values SV1 and SV2
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Conclusion

In this paper PCA based on the SVD algorithm was applied 
for the multivariate analysis of the real hydrological data 
sets. It was found that PCA/SVD is able to extract latent 
variables -singular vectors from noisy hydrological data. 
The dependence of singular vectors on time can give infor-
mation about seasonal changes of water composition as was 
demonstrated in the case of wastewater. Moreover, the sin-
gular vectors can be presented in form of the scatter and 
loading plots which allow mapping of water quality in dif-
ferent localities of the supply system. The revealed connec-
tions among variables were verified by very similar results 
of factor analysis.
 Unlike statistical parametric tests (t-tests or F-tests) 
which require the normal distribution of variables, no such 
assumption is necessary for PCA. PCA is a data analytical, 
rather than statistical, method and can indicate associations 
between samples and/or variables. It was demonstrated that 
PCA/SVD easily provides an unbiased view of water com-
position and thus can be used as a very useful tool for water 
quality assessment.
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